

# Wireless InterOp Architecture and Design

#### **Robert Burchard**



## Agenda

- Smart Grid Concepts
- Use Cases
- Architectural & Design
  Overview & Considerations
  - Network Overview (BH, WWAN, WLAN, WHAN)
  - Coverage and Capacity
  - Equipment Specifications
  - Indicative Build-outs
- Application Solutions & Profiles
- Equipment Mapping to Applications

- Solution Components
  - Overview
  - Service Delivery
    - Design & Implementation
    - Network Management
  - Industrial Radios & Carriergrade Equipment

## **Smart Grid Communications**

- The U.S. Department of Energy assigns the following characteristics to smart grid:
  - Self-healing from power disturbance events
  - Enabling active participation by consumers in demand response
  - Operating resiliently against physical and cyber attack
  - Providing power quality for 21st century needs
  - Accommodating all generation and storage options
  - Enabling new products, services, and markets; and
  - Optimizing assets and operating efficiently
- Communications to accomplish
  - Secure
  - two-way
  - high-speed communications

## **Smart Grid Solutions**

- Grid Virtualization
  - AMI/AMR
  - Distribution Automation
  - Substation Automation (Last Mile)
  - Secure SCADA / DCS / Telemetry
- Demand Response / Management
- Condition-Based Maintenance
- Physical Security and Access Manager
- Workforce Empowerment & Mobility
  - VOIP / Internet
  - TMR / AVL / GIS
- Governance & Compliance
  NERC, FERC, 2005 EPA, DHS-NIMS, CPI





## **Focus on Performance**

#### Design goals

- Flexibility
  - Today's needs
  - Growth
  - Standards applied
- Visibility
  - Network 'At a glance'
  - Performance 'At a glance'
  - M2M, M2P
- Interoperability
  - Legacy needs
  - Industry trends
  - Enable emerging applications



#### **Architectural & Design Overview & Considerations Network Overview (BH, WWAN, WLAN, WHAN)**



## **Smart Grid Interoperability Advantages**



## **Spectrum Management**

- Supports
  - Standards Based

#### PtMP (Point-to-Multipoint)

- Broadband IP/SCADA
- Serial SCADA
- Dedicated Channels
- Shared Channels
- Mesh/Repeater
- Data privacy
- Layered security



## **IP Foundation**

## IP Enables

## Flat Network

- Intranet end-to-end
- IT and Communications now same language
- Standards now deployable

## Collected Data

- Payload Use/needs specific delivery
- Network statistics Use/needs specific delivery
- Backup duplication in Real-Time

## Interoperability

- Legacy needs
- Industry trends
- Enable emerging applications
- Seamless delivery of Company-Wide Security policies

#### Smart Grid Zoned Security – IP Addressing & VLANs





#### 

**Application Solutions & Profiles** 

 $\bigcirc \bigcirc$ 

## **Integrated IP Network Consolidation**

- Consolidation leads to:
  - Lower total cost of ownership
  - Reduced complexity

- Increased service level availability
- Grouping by application types/use
- Greater reliance on individual systems

## Secure 700MHz Wireless Platform



## Data Integration Example

- SCADA RTUs
- Meters
  - MV90 and real time
- SEL 2030 interface to relays
- VoIP Phone
- WiFi Access Point
- Load management transmitters (where the transmitter is not on the communications backbone)
- AMR/AMI Backhaul PLC, wireless
- Remote Generators (customer premises)
- Security (video, card key access future)





**CPE End-to-**

End

Acceptance

Test

Online

Appears in NMS

**Pre-Production** 

**Change Control** 

Installation Successful

**CPE Site** 

Acceptance

Test

In Production

Site Is Accepted

**Full Production** 

Cutover

**Ready for Application** 

Incident and Change



Application

Cutover

Acceptance

Test

In Service

Applications

Decommission

Communications

 $\bigcirc \bigcirc 1$ 

Cutover

Existing

. . . . . . . . . . . .





© 2007 Arcadian Networks. All rights reserved.







## **Application Solutions – Electric Utilities**

Corporate, Industrial & Agricultural AMI for Load and Outage Management

- Meter can be connected directly to radio or via a
  concentrator for bi-directional communications
  - Equipment can be placed in NEMA enclosure if it requires protection from the elements
- 3 Radio or concentrator connects to broadband network
- Data is routed via private 700MHz backhaul WWAN



## **Estimating & Planning**

## **Project Management:** Four-Phase Iterative Methodology



© 2007 Arcadian Networks All rights reserved.

## Architectural & Design Overview & Considerations Coverage & Capacity

- Coverage
  - Base station Antenna Height
  - Coverage Area
    - ROM
    - Coverage Simulation
    - Site Visits
  - CPE End-point Antenna Height
  - Frequency
    - 700MHz, 2.4GHz, 3.65GHz, 5.8GHz
  - Noise-floor
    - dB, determines power CPE endpoint radio needs to "hear" a base station at the given base station power and antenna height

- Capacity
  - Application Requirements
    - # of Intelligent End Devices
    - Reading intervals
    - # of Bytes per read
    - Maximum Latency Tolerable
  - Equipment Capabilities
    - # of Base stations / Sectors
      - Payload
      - Duty Cycle
      - Bits/hertz
      - Serial / Ethernet
    - Maximum radios per channel

## **ROM Decision Points**

- Coverage and capacity concepts are relevant for all technologies
  - Bandwidth, range, channel size, data rate
  - Private
  - Consumer
  - IP or Serial
- Attributes/symptoms differ by technology
- Consumer networks are more difficult to model due to limited visibility and control over to components and inputs

#### Architectural & Design Overview & Considerations Equipment Specifications

- Specifications
  - Channel Bandwidth (kHz): spectrum available & frequency planning
  - Modulation: defines bit/hz, data rate potential, and performance thresholds
    - Data rate / channel (kb/s)
    - Combined with bandwidth defines receiver (Tx) sensitivity
  - Duplex:
    - Frequency division: Tx and Rx simultaneously requires more spectrum for data rate
    - Time Division: Tx and RX share time use caution when co-locating devices
  - Power: combined with Rx sensitivity gives link budget and range potential
  - Data Interface: serial, Ethernet, OEM, etc.
  - Radios/BTS architecture:
    - Point-to-point, Point-to-multipoint, Mesh/Repeater
  - Transaction / time
    - Influences latency

## **RF Design – CelPlan Example** Radio Frequency Design Antenna Height Optimization



#### Architectural & Design Overview & Considerations Equipment Specifications

- Specifications
  - Channel Bandwidth (kHz): spectrum available & frequency planning
  - Modulation: defines bit/hz, data rate potential, and performance thresholds
    - Data rate / channel (kb/s)
    - Combined with bandwidth defines receiver (Tx) sensitivity
  - Duplex:
    - Frequency division: Tx and Rx simultaneously requires more spectrum for data rate
    - Time Division: Tx and RX share time use caution when co-locating devices
  - Power: combined with Rx sensitivity gives link budget and range potential
  - Data Interface: serial, Ethernet, OEM, etc.
  - Radios/BTS architecture:
    - Point-to-point, Point-to-multipoint, Mesh/Repeater
  - Transaction / time
    - Influences latency

## **Diagnostics & Lessons Learned**

- Asset location information
  - Actual vs. location of record
  - Continual feedback to the design team
- Integrity of as-built information
- Aptitude of design support personnel
  - Future training needs
- Integrity of deployment closeout packages
  - Existing processes may be insufficient for current projects
  - Methods, thresholds and scope
- Network touch versus performance failures
- Measurement granularity aligned with application profiles
- RF environmental factors
- A positive mindset approach to deployment
  - New technology deployment identifies improvement opportunities for related business and technology systems
  - Benefits and opportunities transcend technologies
- Project Management Areas Impacted:
  - 1. Project planning and network design
  - 2. Asset information and logistics
  - 3. Spectrum integrity
  - 4. Core network deployment and testing
  - 5. Application cutover
  - 6. Ongoing Operations

## **Managed Services**

#### Network Operations Center (NOC) Capabilities

- Network Awareness
  - Tailor NMS for individual customer needs and SLA performance requirements
- Alarm notification and correlation
  - SMS
  - eMail
  - Visual Map with News and Weather feed
  - NMS Alarm Summary Page
  - Auto-Generated Incident Ticket
- Troubleshooting
  - Methodical, NERC-CIP troubleshooting techniques and methodology
  - Converged realtime and historical, performance & RF, statistics

- Incident Resolution
  - Tailored for customer needs based on SLA MTTR requirements with custom escalation policies
  - Technician oriented and proactive
    - Root cause
    - Steps to be taken
    - Site access information and location
- Network and HelpDesk Reporting
  - Fully customizable reports
  - Customer site performance
  - Customer SLA reporting
    - MTTR
    - Availability
  - RF statistical reports for proactive optimization
  - Informative customer ticket summaries