

Andrew Wright Paul Kalv Rodrick Sibery N-Dimension Solutions Leesburg FL Auburn IN

Cyber Security for the Smart Grid™

Leesburg, FL

- municipal distribution utility with 23,000 meters
- extensive 96-count fiber backbone reaches electric utility, substations, various municipal buildings
- DOE SGIG stimulus winner \$10M + \$10M matching
- replacing all meters with wireless AMI smart meters
 - 15 minute usage for time differentiated rates
 - disconnect switches for prepaid
 - controllable thermostats and water heaters
- installing distribution automation for power quality
 - cap banks, voltage regulators, motor operated switches, faulted circuit indicators remotely controlled by wireless

Leesburg Smart Grid Network

- reconfigure fiber as Gigabit Ethernet redundant ring
 - SCADA communications
 - backup generation
- wireless canopy over entire city with backhaul via fiber
 - preferrably WiMax
 - AMI communications
 - DA communications
 - mobile workforce
 - police, fire, ambulance
 - WiFi hotspots?
 - residential broadband?

Auburn, IN

- municipal distribution utility with 7,000 meters
- extensive 96-count fiber-to-the-premises reaches electric utility, substations, municipal buildings
- DOE SGIG stimulus winner \$2.1M + \$2.1M matching
- replacing all meters with AMI smart meters
 - 5 minute usage for time differentiated rates
 - controllable thermostats and water heaters
 - website with customer usage tools
- installing distribution automation for power quality
 - cap banks, feeder relays, motor operated switches, reclosers remotely controlled over fiber

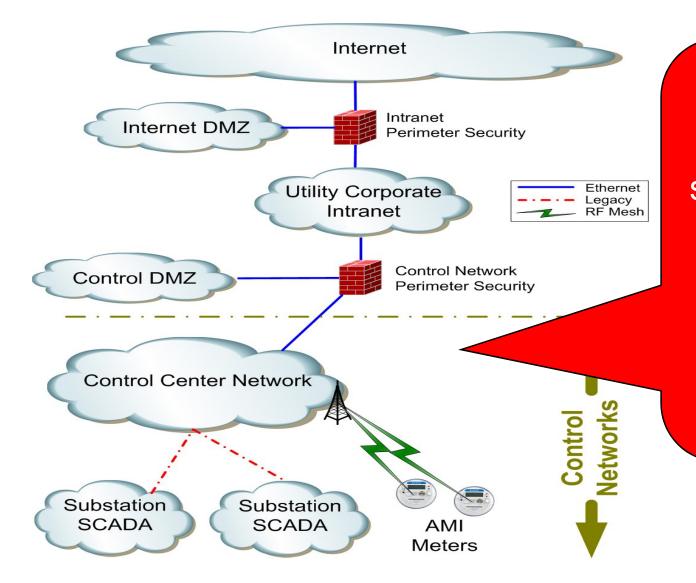
Auburn Smart Grid Network

- extend FTTP all the way to meters as partial mesh
 - SCADA communications
 - AMI communications
 - DA communications
 - WiFi hotspots
 - residential broadband, VoIP, IPTV

AMI + DA + SCADA + DG + broadband + VoIP + IPTV

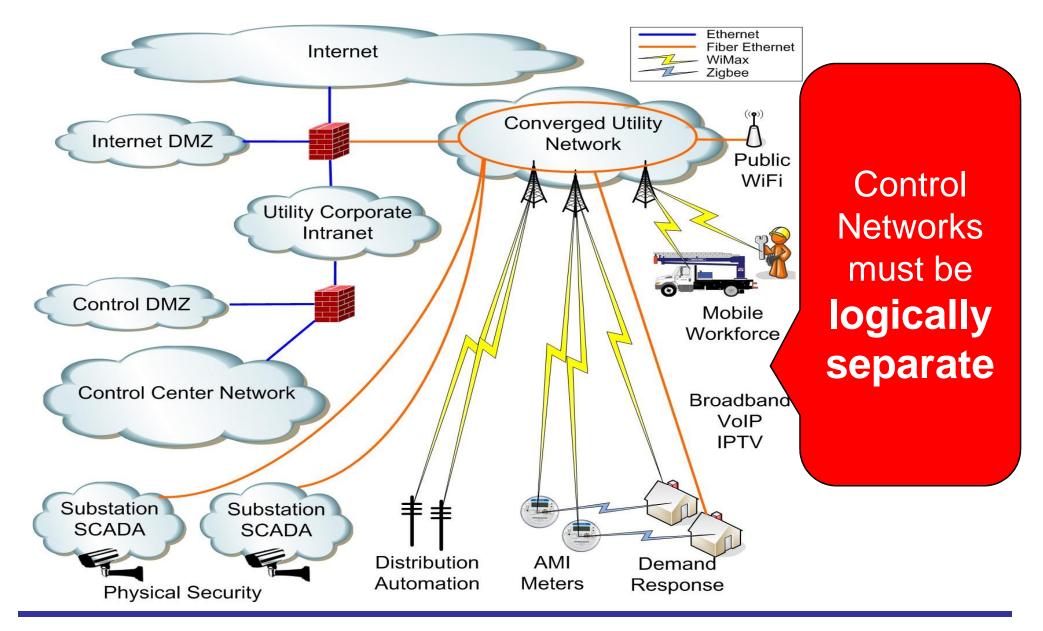
converged smart grid network

- interoperability enabled by **IP**
- high speed can support variety of applications
- economical leverages existing technologies
- future proof can evolve with IP technologies
- inherently standards based and multi-vendor


Security?

What About Security?

Typical Secure Control System Architecture



Control Network(s) strongly separated on physically separate networking devices

NIST SP800-82

Converged Smart Grid Network

n-dimension solutions

Logical Separation for Converged SGN

- how to achieve logical separation?
- consider logical separation at the different layers of the IP stack
 - Layer 1 Physical Layer
 - Layer 2 Link Layer
 - Layer 3 Internet Layer
 - Layer 7 Application Layer

- Separation at Physical Layer can use:
 - different fibers
 - different fiber wavelengths
 - different radio spectrum
 - different radio frequency hopping schemes
- None are 100% secure
 - geographic distribution makes physical security impractical
 - physical tapping of media both fiber and wireless
 - interconnection points
 - frequency hopping scheme must be public for interoperability!
 - *special* licensed spectrum may impede interoperability!

- Separation at Link Layer can use:
 - link layer encryption, eg. WiMax uses AES and CBC-MAC
 - VLANs
 - Network Access Control eg. 802.1X
 - switchport security
 - quality of service markings
- None are 100% secure
 - encryption keys can be extracted from devices
 - CAM table attacks, VLAN hopping attacks can breach VLANs
 - 802.1X has vulnerabilities, is not widely deployed in enterprise wired networks, and is complex to manage
 - switchport security can be fooled by spoofing MACs

- Separation at Internet Layer can use:
 - firewalls
 - ACLs in switches
 - MPLS, VRF-lite
 - IPsec
 - diffserv, qos-preclassification
- None are 100% secure
 - firewalls are coarse, source IPs can be spoofed
 - distributed ACLs are difficult to manage
 - MPLS & VRF-lite rely on secure configuration of all switches
 - IPsec with IKE v2 is good, but complex to configure

- Separation at Application Layer can use:
 - end-to-end encryption & authentication
 - TLS, DTLS
 - secure control systems protocols:
 - IEEE P1711
 - Secure DNP3
 - IEC 62351
 - SSCP
 - C12.22
- None are 100% secure
 - construction of secure cryptographic protocols, even from sound building blocks, is risky
 - application vulnerabilities can negate application protections

Secure Converged Smart Grid Networks

• secure logical separation requires multiple defenses at several different layers of the networking stack

Defense In Depth

- not just AMI/SCADA security
- not just network security
- not just OS/host security

Converged Smart Grid Networks

www.n-dimension.com

andrew.wright@n-dimension.com

full paper in proceedings has more details

Cyber Security for the Smart Grid™