

Interoperability Lessons Learned from Residential Smart Grid Deployments

erik.gilbert@navigant.com

- Ongoing programs
 - Each in 2nd year (of 4-5)
 - Learnings are preliminary, but interesting
- Two from DSM evaluation perspective
 - 1. Deliver cost effective "AMI" with existing AMR
 - Customer broadband + smart grid HAN
 - -2. Examine technology options and combinations
 - Smart meters with broadband vs. backhaul + HAN
- One from customer perspective
 - -3. AMI + broadband + metering "overlay"

- Rough process description...
 - Commission establishes demand and/or energy reduction targets
 - Utility develops and proposes programs (including pilots) with targets
 - Commission approves programs (or suggests modifications)
 - Utility implements program
 - Evaluator measures impacts and provides assessment
 - Commission approves program <u>cost recovery</u>

- Process evaluation
- Impact evaluation
 - Demand
 - Energy

- Technology assessment
 - Performance and reliability
 - Customer acceptance
 - Cost effectiveness

(5

Program#1: AMR+HAN Pilot

Phoenix, AZ, Dec 5-8, 2011

Grid-Interop 201¹

Description	AMI w/HAN	Upgraded AMR w/HAN
Interval Data	Х	Х
Customer Information	Х	Х
Direct Load Control	Х	Х
Temperature Setbacks	Х	Х
Remote Upgrades	Х	Х
Revenue Protection	Х	X*
Meter Diagnostics	Х	X*
Remote Disconnect	Х	
Automated Outage Reporting	Х	X**

*Interval data can be used to determine some level of revenue protection and meter diagnostics. **Future enhancement proposed.

Source: Based on assessments by utility's engineering team, third-party vendor, and consultants.

Technology + Pricing Options

#	Treatment Group	AC Load Control?	Target Enrollment		
1	TOU Rate plus Critical Peak		700		
2	Pricing (CPP)	Х	700		
3	Critical Peak Rebate	Х	700		
4	Technology-Only		700		
5	Control Group		250		
	Total		3,050		

Note: All groups except the control group will receive an Internet gateway and an in-home energy display.

Meter Data: Resolution

- Two resolutions: Wh and dWh
- Makes data choppy

G

Meter Data: Completeness

Grid-Interop

- ERT "Chirps" snapped to 15 minute boundaries
- Gaps filled

Phoenix, AZ, Dec 5-8, 2011

1 10

 Meter data can be used successfully for impact evaluation...

• Now, what about billing?

11

Technology + Pricing Options

#	Group Description	Equipment	Target Enroll- ment
1	CPP with Customer Energy Control Device	Vendor A PCT:AMI vs. Vendor B PCT: BBand	300
2	In-Home Energy Information Display	Vendor A IHD: AMI vs. Vendor B IHD: AMI	300
3	Direct Load Control	Vendor A PCT:AMI vs. Vendor B PCT: BBand	300
4	Smart Phone or PDA App	Home gateway: BBand	300
	Total		1,200

Initial Conclusions...

Grid-Interop

- Train is still at the station!
 - System software delays (AMI vendor)
 - Now starting to move slowly...

B

Program#3: Metering "Overlay"

Grid-Interop 20

1 13

Key Interoperability Interface

- Current Transformers (CTs)
 - Requires professional install
 - Note: solution also leverages smart meter

Grid-Interop 2

14

In-Home Information

- Energy consumption display(s)
 - Local and remote
- Higher resolution possible in local display
 - More dynamic
 - Enables another level of feedback

Main	Your Home	Settings	Help		
At Home	Away Goo	Anight Now	/ Using .44 perday Home 9	5 W 1	7.65
Thermostat					
Thermos	tat		6	54° TARGET 64° STATUS	TEMP

What You're Usi	ng 🕑			₽ ₹
Energy Cost	SELECT A TIMEFRAM	E Oct 25, 2011 💌		
How much	1000			
electricity do				
you use?				
(estimated)	750			
Highest		A	Λ	
710W	(M)	1	/ \	
	500			
Lowest	Po			
261W	•	Jose L	m 1	
Compare to your previous usage	250		v	

Grid-Interop

15

Phoenix, AZ, Dec 5-8, 2011

- Central A/C load
- Selected plug-load
 "smart dishwasher"

	×7 × 1					_	8
		Th	ermostat S	Setting	S		
	Heat	Cool					la
E	Manage y	our heating tem	iperatures.)0
		At Home	- 64°	+	× .		
	1	Away	- 56°	+	× -		
	1	Return Home	<mark>64°</mark>		×		C
iç		Goodnight	- 62°	+)0
	(0) (0)	an	C On ⊙ Auto	C Circula	ate		11
5	✓ M	eets ENERGY S	STAR recommen	dations		Optimize	1
ar							<u>sh</u>
	Cancel		Turn Heating	OFF		NO	

16

Phoenix, AZ, Dec 5-8, 2011

- Major consumer advantage--near real-time visibility and feedback, but...
- Installer must be an electrician AND have working knowledge of HVAC and IT(!) AND available telesupport
- Lengthy install time effects economics
 - And reliance on customer technology & configuration (e.g., WiFi) presents lots of opportunity for walk-aways
- These factors make system expensive
 - Utility advertizes system as "\$1200 value"
 - Cost must come down to scale solution

Grid-In

- Residential smart grid is *creeping* forward...
- Pilots and trials present extremely important learning grounds
 - Technology is making progress, but maturity and availability of key interoperability points can impact entire project
 - Interoperation with *production* systems not yet being significantly tested
 - Nevertheless, this experimentation is critical to moving interoperability and the industry forward
- Business case is TBD
 - Pilot vs. production scale economics
 - Uptake on opt-in capabilities is critical factor