

The SGIMM and Integrated Development, Test and Certification

Grid-Interop 2011

- Smart Grid Product Interoperability
 - Achieving Interoperability
 - One Standard: One Set of Tests
- Integrated Development and Certification Model
 - Development Test Tools
 - Development and Certification
- Who Pays?
 - Models
 - Example Scenario
- Achieving Interoperability: Conclusions and Recommendations
- The SGIMM and Testing

A Model for Achieving Smart Grid Interoperability : Integrated Development and Certification

- Customers who demand standard, interoperable products
- Technical Specification with minimal options and ambiguities
- Standard Conformance AND Interoperability Engineering tests
- Certifications that are integrated with development and test process

- Do not assume that "certified" means products will integrate seamlessly together
- Are specific in RFPs on conformance and interoperability requirements
- Plan for independent assessment of conformance and interoperability of proposed products
- Monitor relevant standards to understand the state of the standards and certifications

- Ambiguities and options increase risks to interoperability, for instance:
- Boolean values are initialized to be values representing True or False. However, IEC 61850-6 is mute on the actual value that should be used. This means that values consisting of: T, F, Yes, No, Y, N, On, Off, and other permutations could all be argued to be valid.
- Different vendors can implement in conformant but differing ways

- For each feature/function defined in a Standard Technical Specification...
- There should be a single set of "official" conformance tests
- Without such a model (one spec: one test) interoperability risks increase greatly

Why do Interoperability Problems Exist?

- If each vendor develops conformance tests for a standards-based product...
- Very likely to have different interpretations of ambiguous specifications
- Leading to interoperability problems
- PART of the SOLUTION
 - One official (industry-accepted) comprehensive set of conformance tests!

Integrated Development and Certification Model

- Historic certification model
 - Vendors develop engineering tests independent of certification tests
 - Certification tests a subset of possible tests
 - No comprehensive "standard" test suite for all of the specification
- Integrated engineering and certification testing model
 - Comprehensive standard conformance tests covers all features, functions and options
 - Developed by Alliance or independent 3rd Party
 - Certification tests are subsets of engineering conformance tests
 - Certifications integrated with development cycle

6

Improved efficiency and effectiveness of industry interoperability:

- Preparation for certification embedded in development process
- Streamline the certification process for vendors using standard conformance development test tools
 - Self-certification (with independent audit)
 - Preferential, accelerated certification
- Engineering feedback on certification tests will be earlier and broader, improving the certification tests rapidly

Combination of standardized engineering tests and certification tests accelerate and best insure interoperability of products

Who Pays???

• Two scenarios

1) Historic Certification Model

- Certification tests developed independently
- Each vendor develops own engineering tests
- 2) Integrated Model with "Official" Comprehensive Engineering Test Tools
 - Single set of tools available for sale to vendors
 - Certification tests subset of Engineering Tools
- Fifty Vendors: Tool Investment = \$1.1 Mil for commercial quality tools

- Assume vendor investment = 50% of commercial cost
- Vendor engineering tool investment = 50 x \$550,000 = \$27,500,000
- PlugFests and Certifications = \$10-20,000/year per vendor = \$500,000 -1,000,000
- Support and Maintenance = \$15,000/year
 per vendor = \$750,000/year

1 17

Test Investment (\$Mil)

Phoenix, AZ, Dec 5-8, 2011

- Assume vendor investment = \$100,000 purchase of commercial tools
- Vendor engineering tool investment = 50 x \$100,000 = \$5,000,000
- PlugFests and Certifications = \$5-15,000/year per vendor = \$250,000 -750,000
- Support and Maintenance = \$15,000/year
 per vendor = \$750,000/year

19

Test Investment (\$Mil)

Phoenix, AZ, Dec 5-8, 2011

Scenarios Compared

Grid-Interop

20

Phoenix, AZ, Dec 5-8, 2011

- All vendors (hopefully) use the same engineering tests
 - Interoperability easier to achieve than if each vendor develops own test tools
- Vendors save significant investment and engineering time
 - Reduces overall development costs and schedule
- Vendors get supported, maintained, well documented tests
 - Faster than self developed
 - Higher quality tests
 - Accelerated product schedules
- Industry alliance saves cost and time using subset of engineering tests for certification tests
- Certification programs can include reduced fees and schedule for those using the engineering tools

Achieving Interoperability: Conclusions and Recommendations

Conclusions

- Industry certification programs
 - Generally test a subset of functions for conformance
 - Generally developed independent of engineering tests
- To achieve interoperability, there needs to be industrystandard, comprehensive set of engineering tests for conformance
 - Certification tests as a subset
- If industry funded a common set of engineering tests for a standard, it would:
 - Accelerate interoperability significantly
 - Reduce time to market and certification and
 - Significantly reduce engineering investments in engineering test tools

- For each standard, develop a single comprehensive set of engineering tests and test tools that are independent of any one product vendor
 - Alliance investment
 - Consortium of customer and vendors that invest in and own the tests
 - Encourage independent third party test tool developers
- Design certification programs to utilize a sub-set of the engineering tests - integrate product development and certification as a continuous process
- Develop incentives in the certification process to encourage the use of the engineering test tools

Testing Models and the SGIMM

SGIMM and Testing

Grid-Interop 201²

Maturity Level	Test/ Certification	
Level 1: Initial	Testing is ad hoc	
Level 2: Managed	Tested to plan with results captured	
Level 3: Defined	Tests exist for community with certification	Members claim compliance to standard
Level 4: Quantitatively Managed	Community test processes demonstrate interoperability	Members claim interoperable conformance
Level 5: Optimizing	Test processes are regularly reviewed and improved	

SGIMM Proposed Test and Certification Metrics

- In demonstrating that community test processes achieve interoperability, which types of tests are in use:
 - Conformance test?
 - Does the Conformance test address all of the functions specified?
 - Is it used by all vendors or participants in integrating the system?
 - Certification test: subset of the conformance test suite?
 - Interoperability testing e.g., plugfests, simulations, other?
- Are certification conformance tests conducted by an independent third party with documented results?
- Are test cases for conformance and interoperability regularly reviewed and updated?
- Does the community provide test feedback to the ITCA for its standards?

- Standards based interoperability can be achieved with an integrated engineering and certification model
- Understanding how to achieve interoperability informs the SGIMM assessment process