

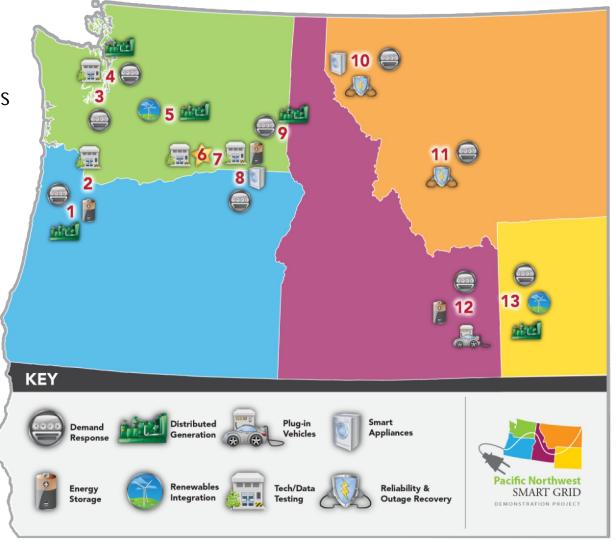
Transactive Control of Distributed Energy Resources Ron Melton & Don Hammerstrom Pacific Northwest Smart Grid Demonstration Battelle, Pacific Northwest Division

PNNL-SA-84354

Grid-Interop

Grid-Interop Pacific Northwest Demonstration Project

What:

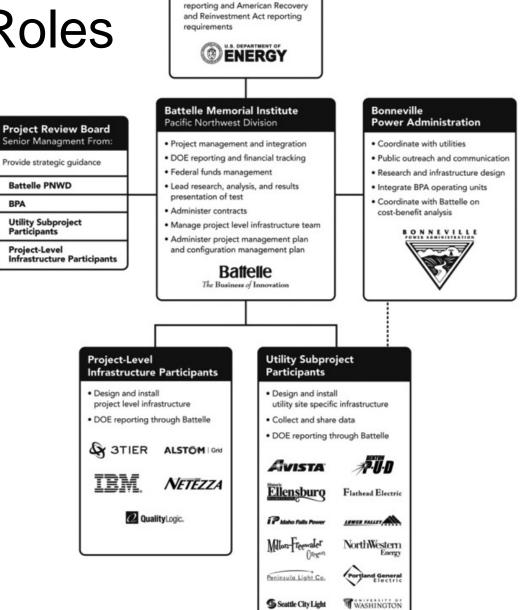

- \$178M, ARRA-funded, 5-year demonstration
- 60,000 metered customers in 5 states

<u>Why:</u>

- Quantify costs and benefits
- Develop communications protocol
- Develop standards
- Facilitate integration of wind and other renewables

Who:

Led by Battelle and partners including BPA, 11 utilities, 2 universities, and 5 vendors



Grid-Interop Project Structure /

Roles

BPA

- Battelle Memorial Institute, Pacific Northwest Division
- **Bonneville Power** Administration
- **Project-Level** 11 utilities (and UW) and their vendors
- 5 technology infrastructure partners

Grid-Interop

U.S. Department of Energy

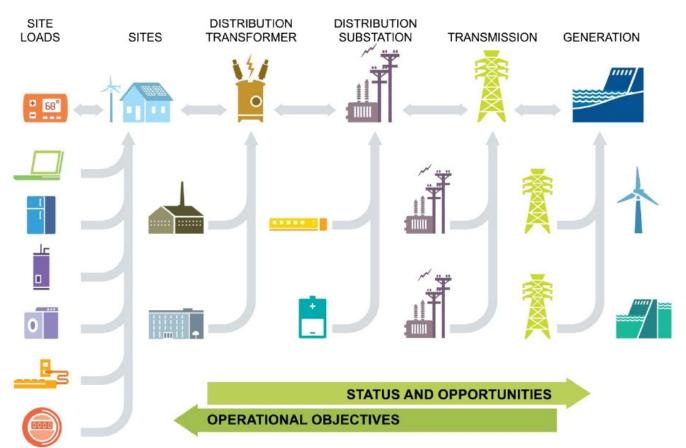
 Federal funding authority Establishes federal assistance

Phoenix, AZ, Dec 5-8, 2011

Demonstration Project Timeline

Grid-Interop 2014

Phase Description	2010	2011	2012	2013	2014	2015
Phase 1 - Concept Design and Baseline Functionality	8 months (2/10 - 9/10)					
Phase 2 - Detailed Design; Subproject and Project- level Infrastructure Installation, Testing, and Implementation; and Test Case Design		23 mon th (10/10 - 8/12				
Phase 3 - Test Case Execution, Data Collection and Analysis, and Enhanced Releases				24 months (9/12 - 8/14)		
Phase 4 - Cost-Benefit Analysis Reporting and Project Closeout					8 mor (6/14 - 1	
 Complete contracts Design "system of systems" to connect subprojects to EIOC 		November 2 Install equipment a subproject Build 'syster of systems' 	at em	Sites up and running Gather two years of data Perform data analysis	 Finalize cost/bene Draft transition plan 	


Phoenix, AZ, Dec 5-8, 2011

Project Basics

Operational objectives

- Manage peak demand
- Facilitate renewable resources
- Address constrained resources
- Improve system reliability and efficiency
- Select economical resources (optimize the system)

Aggregation of Power and Signals Occurs Through a Hierarchy of Interfaces

Transactive Control

A single, integrated, smart grid incentive signaling approach utilizing an economic signal as the primary basis for communicating the desire to change the operational state of responsive assets.

• Transactive Incentive Signal (TIS)

A representation of the actual delivered cost of electric energy at a specific system location (e.g., at a transactive node). Includes both the current value and a forecast of future values.

Transactive Feedback Signal (TFS)

A representation of the net electric load at a specific system location (e.g., at a transactive node). Includes both the current value and a forecast of future values.

Grid-Intero

- Respond to system conditions as represented by incoming Transactive Incentive Signals and Transactive Feedback Signals through
 - Decisions about behavior of local assets
 - Incorporation of local asset and other information
 - Updating both transactive incentive and feedback signals
- Inputs are needed from node-owners to calculate incentive and feedback signals
- Each signal is a sequence of forecasts for a time-series, so inputs will also be sequences of future (forecast/planned) values

Demonstration IST series definition

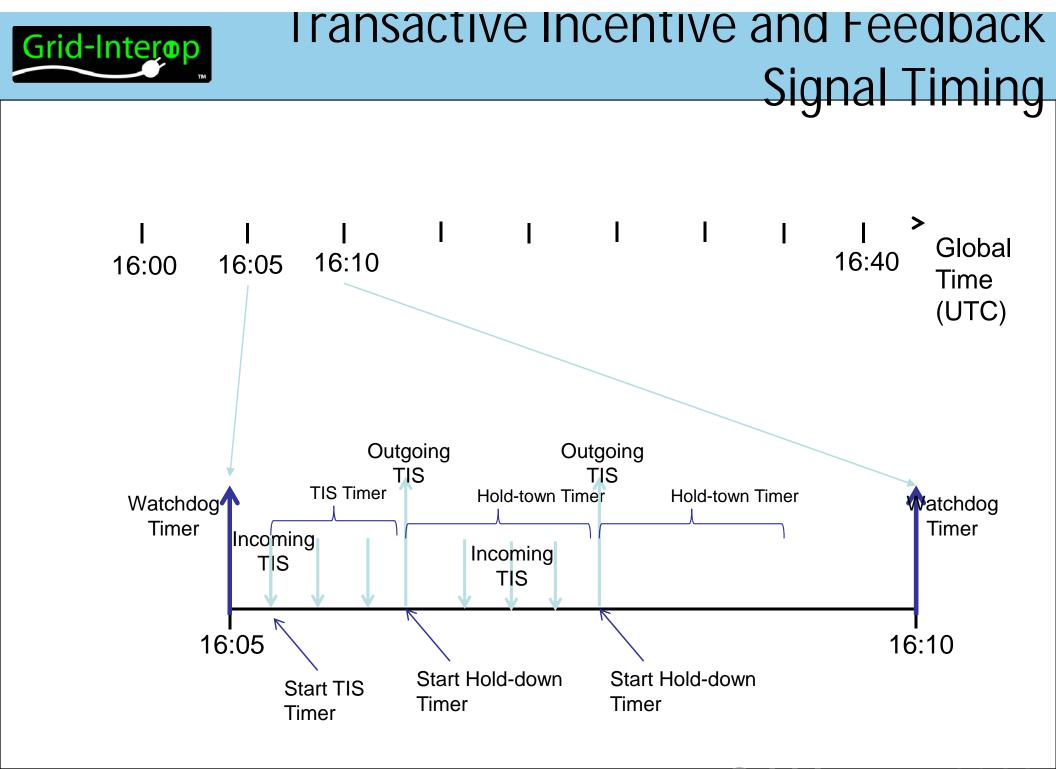

Pacific Northwest SMART GRID demonstration project

Table 1. Recommended Interval Time Series for use with TIS and TFS

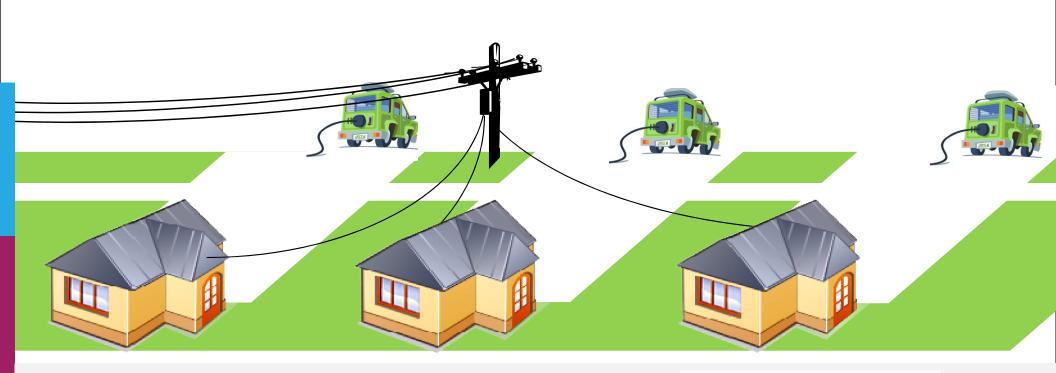
<u>Duration</u>	No. Intervals	Interval Start Times		
5 minutes	12	IST ₀ , IST ₀ + 0:05,, IST ₁₀ + 0:05		
15 minutes	20	Round(IST ₁₁ + 0:15) [*] , IST ₁₂ + 0:15,, IST ₃₀ + 0:15		
1 hour	18	Round(IST ₃₁ + 1:00) [*] , IST ₃₂ + 1:00,, IST ₄₈ + 1:00		
6 hours	4	Round(IST ₄₉ + 6:00) [*] , IST ₅₀ + 6:00,, IST ₅₂ + 6:00		
1 day	2	Round($IST_{53} + 1:00:00$) [*] , $IST_{54} + 1:00:00$, $IST_{55} + 1:00:00$		
> 3 days	56 intervals	57 interval start times (IST)		
* This function "Round" indicates rounding <u>down</u> to the next 15-minute, 1-hour, 6-hour, or				
1-day interval start time. Times are indicated as dd:hh:mm, i.e., days, hours, and minutes.				

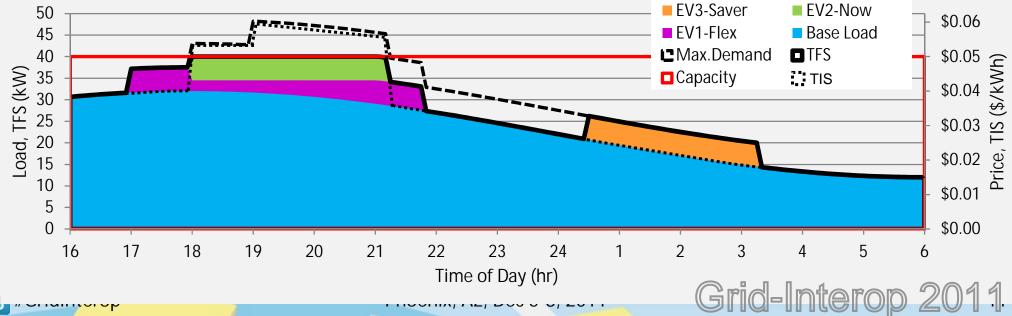
Extracted from Interval Start Time Series Definition, Version 1.1

Phoenix, AZ, Dec 5-8, 2011

Grid-Interop 20

19




- Imagine the following situation:
 - Three neighbors with electric vehicles
 - All three fed by same distribution transformer
 - All three come home and want to do a fast charge at the same time!
- Problem transformer is overloaded if all three fast charge at the same time
- Transactive control solution
 - Transformer sees in feedback signal that all three plan to fast charge
 - Transformer raises value of incentive signal during planned charging time to reflect decreased transformer life
 - Smart chargers and transformer "negotiate" through TIS and TFS till an acceptable solution is found

Grid-Interop

Transactive Control – An Illustration

- Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number DE-OE0000190."
- Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Grid-Interop

Ron Melton, Project Director ron.melton@battelle.org 509-372-6777

Don Hammerstrom, Principal Investigator donald.hammerstrom@battelle.org 509-372-4087

Project website: www.pnwsmartgrid.org