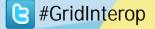


## THE SMART GRID INTEROPERABILITY LAB

Presented by Harry Stephey KEMA PowerTest, LLC December, 2011



### Grid-Interop 2011




- Products can be compatible with each other and coexist on the same network, but not be interoperable
- Products can be compliant with industry specs (such as ANS C12.22, IEC 61850), but not be interoperable
- Interoperability includes multiple aspects of form, fit and function



EnerNex Corporation's <u>Existing Conformity Assessment</u> <u>Program Landscape Version 0.82</u> states:

- Conformance testing ... "determines whether an implementation conforms to the standard as written, usually by exercising the implementation with a test tool."
- "Almost all of the available testing programs are for conformity to the standard only; they do not test for interoperability between systems."



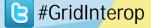



- "The capability of two or more networks, systems, devices, applications, or components to exchange and readily use information—securely, effectively, and with little or no inconvenience to the user."
- "The Smart Grid will be a system of interoperable systems; that is, different systems will be able to exchange meaningful, actionable information."
- "The systems will share a common meaning of the exchanged information, and this information will elicit agreed-upon types of response."
- The reliability, fidelity, and security of information exchanges between and among Smart Grid systems must achieve requisite performance levels."

Draft NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0

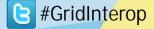


- Communications equivalence
- Identical performance in the same environment
- Functional equivalence

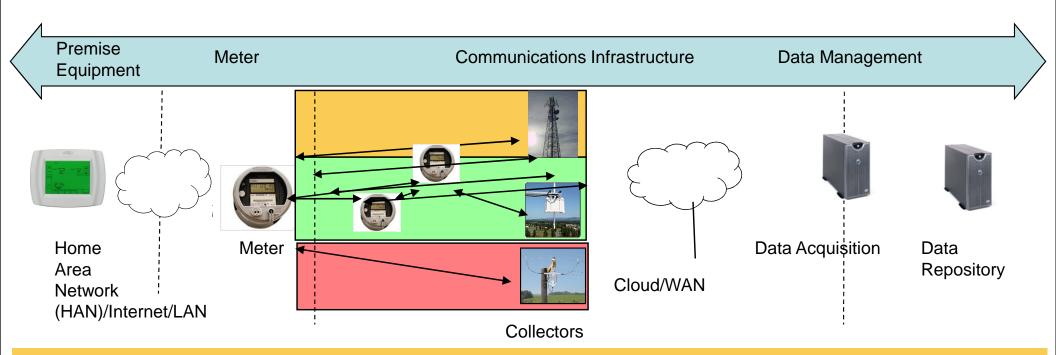





- Create a real-life functional environment
- Generate a complete set of input stimuli
- Test complete multi-device system operation
- Test interaction with all system elements
- Test performance in the presence of normal and degraded communications systems
- Simulate and emulate operation of multiple devices
- Measure and document test results




- Utilities:
  - Evaluate smart grid options without having to run many technology pilots;
  - Reduce their risks by demonstrating interoperability of various vendor's offerings against industry standards;
  - Optimize configurations by benchmarking performance and enabling managed tests and evaluations;
  - Conduct regression tests to validate design or firmware changes






- Vendors:
  - Create "fair play" environment with independent baselines
  - Demonstrate compatibility and suitability of products and services for utility needs
  - Refine offerings to meet emerging needs
  - Gain valuable information on key client performance expectations







The following options are some of the more commonly considered options. This model would provide the framework to select those that are most appropriate to the needs of our clients

 Interfaces to inpremise devices, including home area networks (HAN) and load control devices and communicating thermostats

#GridInterop

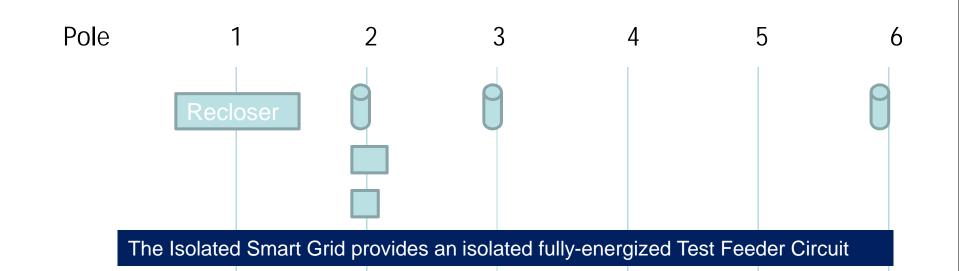
- Interval recording
  200-amp reconnect/
- disconnect switches
- •Power outage/
- restoration reportingTamper and theft
- ramper and their
- notification
- Remote reprogramming
- Load Control
- Device Monitoring

- Licensed RF point-to-point
- •Unlicensed RF mesh
- •PLC
- Internet

- •SGIL LAN/WAN
- Commercial cellular services
  Leased line data service
- •PJM Signals

- Echelon Head End
- eTender system
- commercially offered systems plus integration
- •Emulation of interface to existing CIS

Typical


The Smart Grid Interop LAB provides a view of data end-to-end



# Live Smart Grid Feeder Circuit

Grid-Interop 20

10



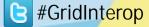
| Purpose   | Switch Circuit<br>On/Off | Comm Node                                    | Future Test<br>Multi-Lug<br>Shared<br>Meter | Line Sensors           | Test Comm<br>Framework | Test Comm<br>nodes      |
|-----------|--------------------------|----------------------------------------------|---------------------------------------------|------------------------|------------------------|-------------------------|
| Equipment | Recloser;<br>Sensor      | Transformer,<br>Comm<br>Node, Smart<br>Meter | Transforme<br>r; Tropos<br>Unit             | Snap-On<br>S&C Sensors |                        | Transformer<br>; Sensor |
| Options   | Signage                  | Power<br>indicator                           |                                             | Signage                |                        | Signage                 |

Phoenix, AZ, Dec 5-8, 2011

Grid-Interop 20

11

| Test Objective                | Home Area<br>Network<br>Devices | HAN<br>Network | Electric<br>Meter | Gas Meter | Field Area<br>Network | Aggregation<br>Point | Wide Area<br>Network | Head End   | MDM/Back<br>Office |
|-------------------------------|---------------------------------|----------------|-------------------|-----------|-----------------------|----------------------|----------------------|------------|--------------------|
| Simulated HAN Device          | Unit under                      | Unit under     | Simulated         | N/A       | Simulated             | Simulated            | Simulated            | Simulated  | Simulated          |
| Compatibility/Performance     | Test                            | Test           | Condition         | N/A       | Condition             | Condition            | Condition            | Condition  | Condition          |
| HAN Device Compatibility      | Unit under                      | Unit under     | Physical          | N/A       | Physical              | Physical             | Physical             | Physical   | Simulated          |
| Performance Test              | Test                            | Test           | Device            | N/A       | Device                | Device               | Device               | Device     | Condition          |
| Simulation Electric Meter     | Simulated                       | Simulated      | Unit under        | N/A       | Simulated             | Simulated            | Simulated            | Simulated  | Simulated          |
| Compatibility                 | Condition                       | Condition      | Test              | N/A       | Condition             | Condition            | Condition            | Condition  | Condition          |
| Electric Meter Performance    | Physical                        | Physical       | Unit under        | N/A       | Simulated             | Simulated            | Simulated            | Simulated  | Simulated          |
| Test                          | Device                          | Device         | Test              | IN/A      | Condition             | Condition            | Condition            | Condition  | Condition          |
| Simulation Field Area Network | Simulated                       | Simulated      | Simulated         | N/A       | Unit under            | Simulated            | Simulated            | Simulated  | Simulated          |
| Compatibility                 | Condition                       | Condition      | Condition         | IN/A      | Test                  | Condition            | Condition            | Condition  | Condition          |
| Field Area Network            | Physical                        | Physical       | Physical          | N/A       | Unit under            | Physical             | Physical             | Physical   | Simulated          |
| Performance Test              | Device                          | Device         | Device            | IN/A      | Test                  | Device               | Device               | Device     | Condition          |
| Simulation Aggregation Point  | Simulated                       | Simulated      | Simulated         | N/A       | Simulated             | Unit under           | Simulated            | Simulated  | Simulated          |
| Compatibility                 | Condition                       | Condition      | Condition         | IN/A      | Condition             | Test                 | Condition            | Condition  | Condition          |
| Aggregation Point             | Physical                        | Physical       | Physical          | N/A       | Physical              | Unit under           | Physical             | Physical   | Simulated          |
| Performance Test              | Device                          | Device         | Device            | IN/A      | Device                | Test                 | Device               | Device     | Condition          |
|                               | Simulated                       | Simulated      | Simulated         | N/A       | Simulated             | Simulated            | Unit under           | Simulated  | Simulated          |
| Wide Area Network Evaluation  | Condition                       | Condition      | Condition         | IN/A      | Condition             | Condition            | Test                 | Condition  | Condition          |
| Wide Area Network             | Physical                        | Physical       | Physical          | N/A       | Physical              | Physical             | Unit under           | Physical   | Simulated          |
| Performance Monitoring        | Device                          | Device         | Device            | IN/A      | Device                | Device               | Test                 | Device     | Condition          |
| Head End Performance          | Simulated                       | Simulated      | Simulated         | N/A       | Simulated             | Simulated            | Simulated            | Unit under | Simulated          |
| Benchmark Test                | Condition                       | Condition      | Condition         | IN/A      | Condition             | Condition            | Condition            | Test       | Condition          |
| Head End Performance          | Physical                        | Physical       | Physical          | NI/A      | Physical              | Physical             | Physical             | Unit under | Simulated          |
| Evaluation                    | Device                          | Device         | Device            | N/A       | Device                | Device               | Device               | Test       | Condition          |


#### Sample Test Conditions



- Create a limited-scale, but technologically advanced, *test facility to validate compliance* of low-voltage automation devices, meters, and consumer products with evolving Smart Grid standards
- Establish *a reference architecture* that is representative of typical smart grid field implementations
- Permit various elements to be either tested or simulated under controlled and repeatable environments



- Enable utilities and vendors to test and optimize the performance of smart grid elements to achieve their business objectives
- Form a system-level smart grid baseline that will be used for ongoing compliance and regression tests
- Facilitate the evaluation of new and existing products that may could be included in future configurations and assess these new offering performance against defined baselines





- Test the compliance of products to established and evolving interface and security standards, including the NIST interoperability framework.
- Allow equipment to be appropriately exercised in a live electrical distribution environment, prior to deploying these assets into the field
- Further the understanding how best to specify and deploy smart grid elements to meet current and future business needs




- Malicious Intent
- Device level vs. End-to-End
- Enforceability No standards against which to audit or certify
- Pass/Fail vs. Degree of Risk
- HAN Challenges
- Cloud Computing
- 3G Cellular
- Lack of Utility Involvement in Standards Groups

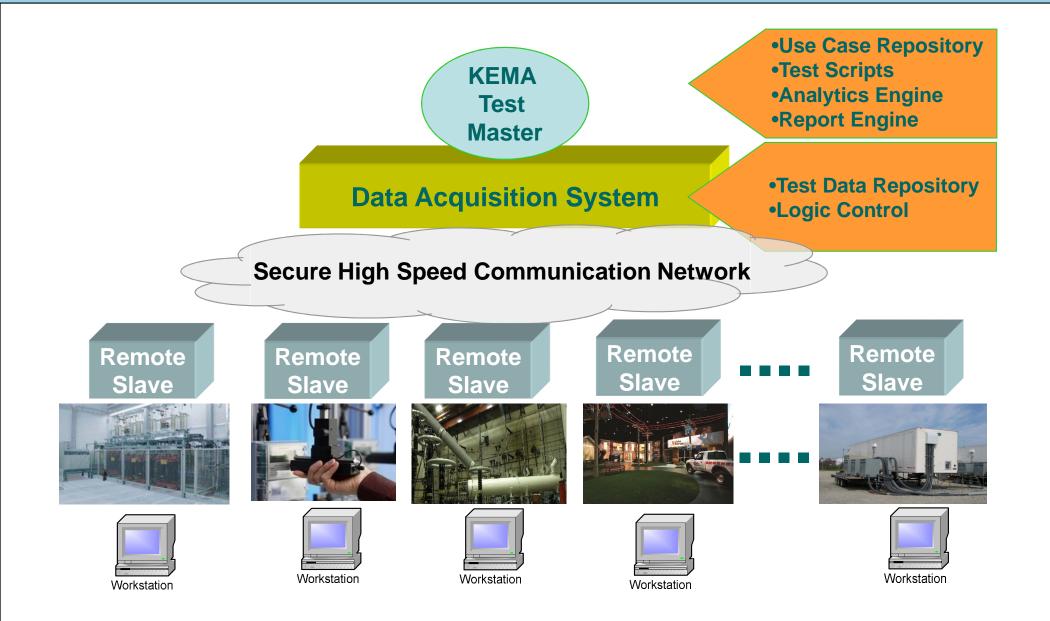


# The Virtual Pilot Program

| LAB PILOT PROGRAMS Performance testing                                                                                   |             |                                                                                           |                                                                                                              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| Reliability>Will the device<br>perform as<br>intended in test<br>scenarios?>How does it<br>compare to<br>other products? |             | Regression<br>> How does the<br>product perform<br>in system with<br>older<br>components? | Cyber Security<br>> How does the<br>product address<br>security and<br>interact with<br>security<br>systems? |  |  |  |
|                                                                                                                          | Report of F | Performance                                                                               |                                                                                                              |  |  |  |
|                                                                                                                          |             | ication<br>offering)                                                                      |                                                                                                              |  |  |  |



Phoenix, AZ, Dec 5-8, 2011


Grid-Interop 201 %

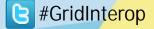


### SGIL Architecture

Grid-Interop

17




Phoenix, AZ, Dec 5-8, 2011



Smart Grid Interoperability Lab

Grid-Interop 201 18

### QUESTIONS?



Phoenix, AZ, Dec 5-8, 2011