

Applying EI/EMIX to DR and Transactive Energy

David Holmberg and Bill Cox Grid Interop 2012, Irving, TX

- We want to see the customer/ "prosumer" be an active participant in the smart grid.
- Enable unforeseen technologies and new actors to participate in making the grid smart.
- Move the information needed for DR in an ITfriendly way.
- Decouple the actors' and their implementation/ update/deployment.

Smart Grid Domains and existing standards

Driving to Grid 2020

Energy Interoperation was designed to serve DR and market interactions within the Smart Grid.

Interoperation Considerations

 Different smart grid domains are different worlds with different information models and communication standards stacks.

Different domains

We don't want to extend BACnet to talk to the utility back-end DR event management system or vice versa.

> FSGIM, BACnet, KNX, LON, ECHONET, ISO/IEC JTC1 standards, and many many more

Different Domains and Software Evolution

- New technology must work in parallel with the old for a while
- Users want to make their own decisions about transition times and techniques
- Users need to evolve and upgrade and maintain on a schedule that matches their business needs
- Small services that do one thing well (e.g. authentication) are easier to reuse
- Technologies as yet unknown must work with today's systems

How to Integrate

- The waist of the hourglass—Shallow Integration
 - Simple services
 - Minimal interface
 - Abstracted at the right level
 - Don't try to integrate with everything on the other side, just the right things

Actors and Information

Energy Services Interface Actors and Information Exchanged

acceptance ² Energy usage, per NAESB ESPI standard provides validated meter data from utility back end. ^a The meter shown here in the facility domain is a sub-meter. The utility revenue meter may also provide data to the facility owner using the facility meter data model.

*The service providers and consumers listed here are given as examples and not meant to be comprehensive.

El's Simple Architecture

- Energy Interoperation/EPRI terminology
- A VEN has exactly one VTN in a given relationship
- A VTN has one or more VENs in a given relationship

- B—Communication
- C: Recipient of DR Signal (e.g. Device/Facility EMS) Grid-Interop 2012

Same Services, Same Patterns

- We have a simple set of services
- The following examples are for DR event management
- Some actors have multiple roles
- Energy Interoperation also supports Transactive Control/Transactive Operation

Not Just Between "the grid" and "the facility"

Energy Interoperation can be used to build a series of interfaces along the path from source to sink. Each only knows its direct connections. This is the "out of the paper" view

More Than Utility-Customer

- A is a wholesale market operator issuing a DR signal
- B, C, D, E are first level aggregators
- F, G, H are second level aggregators and B's customers
- I, J, L are stores and are G's customers
- L is also E's customer

Example: Price Distribution

- A is a market operator distributing prices to B, C, D, and E
- B is a building price server that distributes prices to controllers F, G, H that manage floors in its building
- I, J, K are HVAC units on floor G
- L is a thermal storage unit that can run on alternate fuel supply with price from E.

Boundaries Depend on Deployment

Energy Interoperation can be used within facility domain

- G is a Facility ESI
- I, J, K, L are components of the facility and produce or consume energy
- Service Requests go to G, which adjusts them and then distributes them to I, J, K, L
- Information at ESI can be distributed with EI, BACnet, LON, SEP,

El outside of facility domain

- G is a Facility ESI
- Information is at ESI, can distribute with BACnet, LON, SEP,

Cloud Deployment

Remote Energy Management in the Cloud

- A is wholesale market sending DR signal
- B is retail utility
- G is a remote Building EMS in the cloud
- Facility energy management is performed by G talking to facility components

Decouple at the Red Boundary

- Application code evolves on its own timeline
- The VEN/VTN interfaces and information model is stable
- Define a clear mapping between your application code and the Energy Interoperation service interfaces

Integration Across Many Standards

- Must be able to integrate information models in the systems of actors presenting the VEN and VTN interface
- Cannot extend each actors' interfaces and models
 - They don't work with each other at details
 - Viz. "Internet Terminal" problem and solution
- Extract key information to communicate
 - See Grid-Interop 2011 paper on DR event core semantics

Node Implementations

- There is great diversity of Virtual End Nodes (facilities, etc)
 - Industrial
 - Commercial/Institutional
 - Residential
 - And hybrids
- Large investments across the world
- Integration with existing management systems is critical to success

Specifications for Actors—VENs (1)

Driving to Grid 2020

- ISO 16484-5 (BACnet)
- ISO/IEC 14543-3 (KNX)
- ISO/IEC 14543-4 (Echonet)
- ISO/IEC DIS 14908 (LONtalk)
- ISO/IEC 15045 (Residential Gateway)
- ISO/IEC TR 15067 (Energy management HES)
- ISO 18012 (Product interoperability guidelines)

Specifications for Actors—VENs (2)

Driving to Grid 2020

Grid-Interop

- IEC 62056-61/62 (Metering, tariff)
- ISO 20022 (Financial systems)
- oBIX (Building automation and integration)
- ISA 100, etc (Industrial)
- OPC UA (Industrial)
- Smart Energy Profile
- ISO CD/ASHRAE SPC201P (Facility Smart Grid Info Model)

Conclusions

- Energy Interoperation/OpenADR designed to be an integration interface to communicate the needed DR event information and market transaction information to enable facility integration into the smart grid.
- Built on sound software architecture principles
- Interface decouples information model and protocols on one end from other end.
- Minimal information transfer hides complexity
- 2-party interaction that can be chained together to serve multiple actors to build different delivery paths and different DR approaches