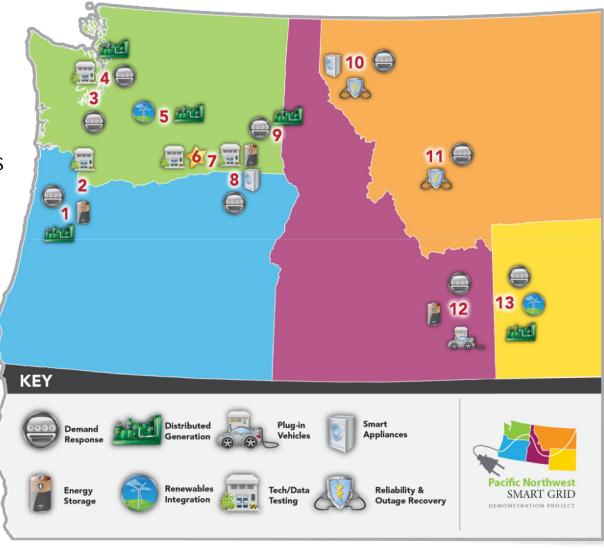
Pacific Northwest Smart Grid Demonstration

Dr. Ronald B. Melton, Project Director Dr. Donald J. Hammerstrom, Principal Investigator Battelle, Pacific Northwest Division

PNWD-SA-9876

Pacific Northwest Demonstration Project

What:

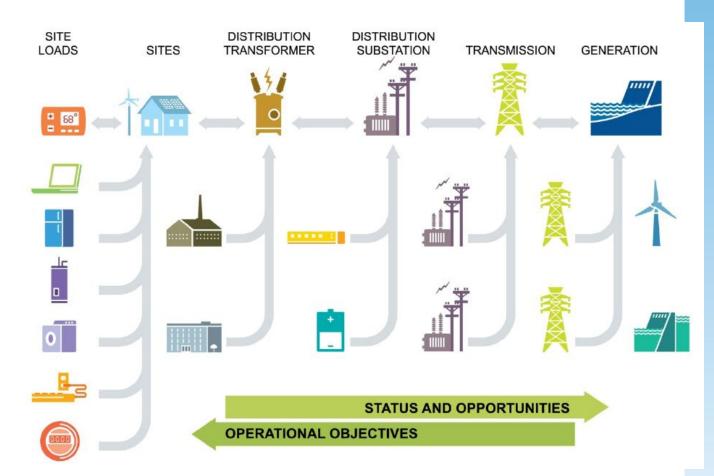

- \$178M, ARRA-funded, 5-year demonstration
- \$89M US DOE, \$10M BPA, \$79M project participants
- 60,000 metered customers in 5 states

<u>Why:</u>

- Quantify costs and benefits
- Develop communications protocol
- Develop standards
- Facilitate integration of wind and other renewables

<u>Who:</u>

Led by Battelle and partners including BPA, 11 utilities, 2 universities, and 5 vendors


Grid-Interop

Project Basics

Transactive Control Operational objectives

- Manage peak demand
- Facilitate renewable resources
- Address constrained resources
- Improve system reliability and efficiency
- Select economical resources (optimize the system)

Aggregation of power and signals occurs through a hierarchy of interfaces

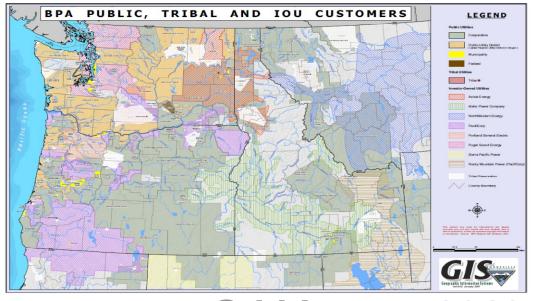
Grid

Progress Towards Project Objectives

Grid-Inter

2010	2011	2012	2013	2014	2015
Phase 1 - Concept Design and Baseline Functionality	Project-level I	ed Design; Subproject and nfrastructure Installation, lementation; and Test Case Design	Collection and	st Case Execution, Data I Analysis, and Enhanced Releases	Phase 4 - Technical Reporting and Project Closeout
Objective 1: Creat	te foundation of a	sustainable regional	· ·	<u>.</u>	:
smart grid					
Objective 2: Deve and control infras		ole communication	Validate an intero infrastructure	perable communication and	l control
		Objective 3: Measure and	d validate smart grid	d cost and benefit	
Objective 4: Cont	ribute to the deve	opment of standards for tra	ansactive control		
					· · ·
Objective 5: Integ	rate with renewab	le resources in the region			
	•	· 1			

Underlying frameworks, architectures and key standards


Grid-In

- Distributed architecture with intelligence in each "transactive control node"
- Key information encoded in the Transactive Incentive Signal and Transactive Feedback Signal – no current standards apply, will be discussed as a possible new standard
- Distributed system implemented using IBM's Internet Scale Control System (iCS) an implementation of ISO/IEC 18012

Specific elements of markets, regulation, policy, etc. that impact project

- No real-time market in the region bi-lateral contracts across PNW
- Transmission, schedules and contracts across balancing authorities
- Aggressive renewable portfolio standards challenge to integrate wind
 - Traditional theme of regional planning is conservation
 - Heterogeneous mix of utility organizations in the region

Grid-Intero

Key stakeholders and methods for their engagement

- General public
- Project participants
- U.S. DOE
- Regional entities
- Smart grid research and development community
- Utility industry
 - Vendors
 - Utilities
- Regulators
- Legislators

- Project website
- Participant websites and social media
- Project reports and documentation
- Technical meetings and conferences
- Technical publications
- Briefings to regulators, legislators and policy makers regionally and nationally

Grid-Ir

Subproject Test Case Summary

	Transactive Control	Reliability	Conservation /Efficiency	Social	Totals
Avista Utilities	4	3	5	3	15
Benton PUD	1	1	1	0	3
City of Ellensburg	1	0	8	0	9
Flathead Electric	6	2	0	0	8
Idaho Falls Power	8	2	3	3	16
Lower Valley Energy	3	2	6	1	12
Milton-Freewater	3	0	0	0	3
NorthWestern Energy	4	1	3	1	9
Peninsula Light	2	1	1	0	4
Portland General					
Electric	4	1	1	2	8
UW/Seattle City Light	5	0	3	0	8
Totals	41	13	31	10	95

Grid-Interop 2012

Lessons Learned / Surprises / *Ting to Grid 2020* **Challenges** Many examples of vendors over-promising & under

- delivering
- Getting access to needed regional data much harder than expected
- Integration with existing bulk power system operations will be challenging
- Each utility has different challenges in relating "smart grid" to their customers – meet people where they are
- Customer questions:
 - How will this benefit me?
 - What will it cost me (time and/or money)?
- Students are pushing for adoption
- R&D with deployment to utilities is challenging!

Grid-Inte

For further information

Dr. Ron Melton

ron.melton@battelle.org

+1-509-372-6777

www.pnwsmartgrid.org

- "Annual Report"
- Quarterly newsletters
- Participant summaries
- Background on technology

Grid-Inte

Acknowledgement & Disclaimer

- Driving to Grid 2020
- Acknowledgment: This material is based upon work supported by the U.S. Department of Energy under Award Number DE-OE0000190.
- Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. **Grid-Interop**