
The Energy Systems Integration Facility (ESIF) at NREL

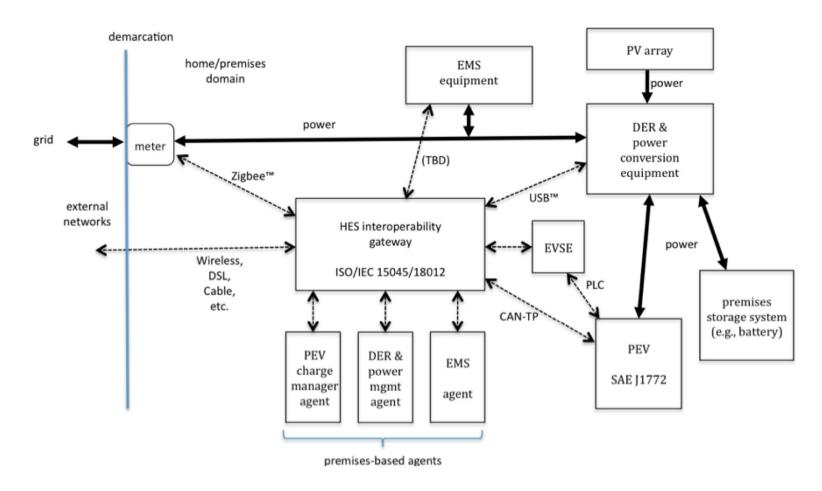
A Smart Power Platform for Product Interoperability Development, Test, and Evaluation

Ben Kroposki, PhD, PE NREL Golden, Colorado Dave Cohen Evolution 7 Labs Boulder, Colorado Tim Schoechle, PhD Evolution 7 Labs Boulder, Colorado

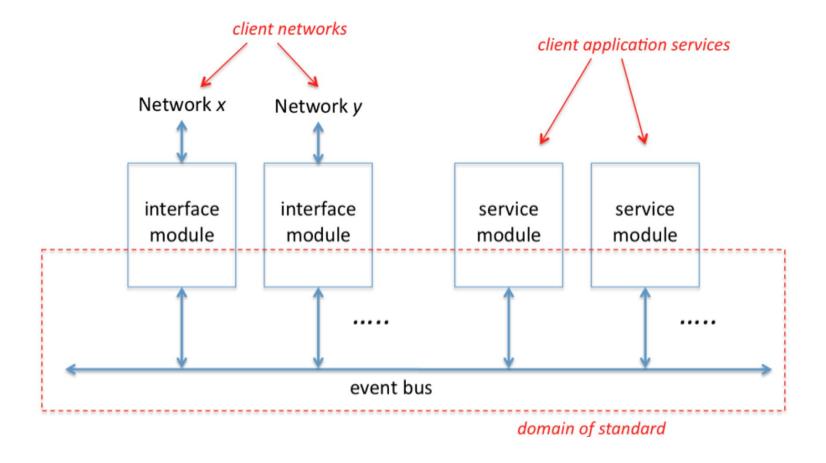
- Purpose of the Energy Systems Integration Facility (ESIF)
 - Research and test integrated energy systems, devices, and concepts for electric supply and demand systems
 - Interconnection of distributed energy systems and the integration of renewable energy into the electricity grid

- The Smart Power Laboratory at ESIF
 - Part of the new NREL campus in Golden, Colorado
 - 5,300 sq. ft. laboratory under construction

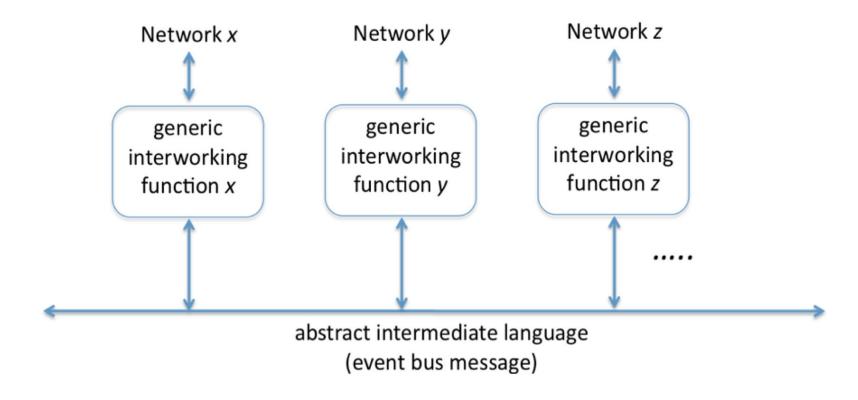
Cohen, Kroposki & Schoechle


- The Smart Power Laboratory at ESIF
 - Enable the development, testing, and evaluation of premises-based energy systems and equipment.
 - Facilitate the commoditization of energy-related appliances as commercial/consumer products and their integration with the local electricity supply grid
 - Smart power applications
 - advanced inverters and power converters/conditioners
 - residential and commercial scale appliances
 - home automation systems, HVAC, lighting controls, energy management systems, meters, and other control technologies.

- The Smart Power Platform
 - A standards-based and open source hardware/software platform
 - For the testing and evaluation of multiple vendor's products within a common framework or system for the home or small building environment.
 - Platform based on new international standards:
 - ISO/IEC 15045-2 Gateway
 - ISO/IEC 18012-2 Guidelines for product interoperability
 - ISO/IEC 15067-3 Model for energy management
 - Open Source metadata libraries and registries
 - client network protocol stacks and interface code
 - basic application objects and object types
 - for developers wishing to code modular test or service apps using the platform and its resources.



Energy management model


Gateway platform architecture

Cohen, Kroposki & Schoechle

- Interoperability architecture
 - Translation process is performed by a network-specific generic interworking function in each interface module

Cohen, Kroposki & Schoechle

Typical client network interface module examples

Commercial & Industrial LAN/WAN	Home & building/LAN/HAN
BACnet	ZigBee™
LonWorks	SEP 1, SEP 2
Modbus	WiFi™
Ethernet	WiBEEM
CAN bus	HomePlug™
KNX™	KNX™
WSP	Z-Wave™
DSL (many varieties)	Echonet
LR/WPANs	Ethernet
DOCSIS™	UPnP™
GPRS	IGRS™

- The Smart Power Lab Operations
- Vendor interoperability development and testing process
 - Initial development and ongoing maintenance of the metadata libraries and registries
 - · for client networks and
 - for application services.
 - Testing and evaluation of multiple vendor's products
 - Lab will host these libraries and provide maintenance and support
- With experience Lab will implement programs for validation and product certification.

- Goal of the ESIF and Smart Power Lab
 - to enable and foster the growth of an ecosystem of interoperable "plug and play" in-home devices and software applications to support distributed renewable energy use, generation, and storage within homes and small buildings
- Typical devices/applications include
 - Solar PV systems, micro-turbines
 - Smart inverters, power conditioners/converters
 - Smart batteries
 - Smart appliances, HVAC, etc.
 - Energy management systems
 - Smart thermostats
 - Metering devices
 - Electric vehicles and charging systems

Cohen, Kroposki & Schoechle

- Goal of the ESIF and Smart Power Lab
 - To play a significant role in advancing the practical understanding of how to take maximum advantage of distributed energy resources on a highly localized basis
- contribute to enabling a new electricity economy
 - Enable commoditization of smart grid related products
 - Improve grid security and energy security in general
 - Integrate renewables with electric vehicles and transportation

Thank you!

Ben Kroposki, PhD, PE NREL Golden, Colorado <benjamin.kroposki@nrel.gov Dave Cohen
Evolution 7 Labs
Boulder, Colorado
<dc@evolution7.net>

Tim Schoechle, PhD
Evolution 7 Labs
Boulder, Colorado
<timothy@schoechle.org>