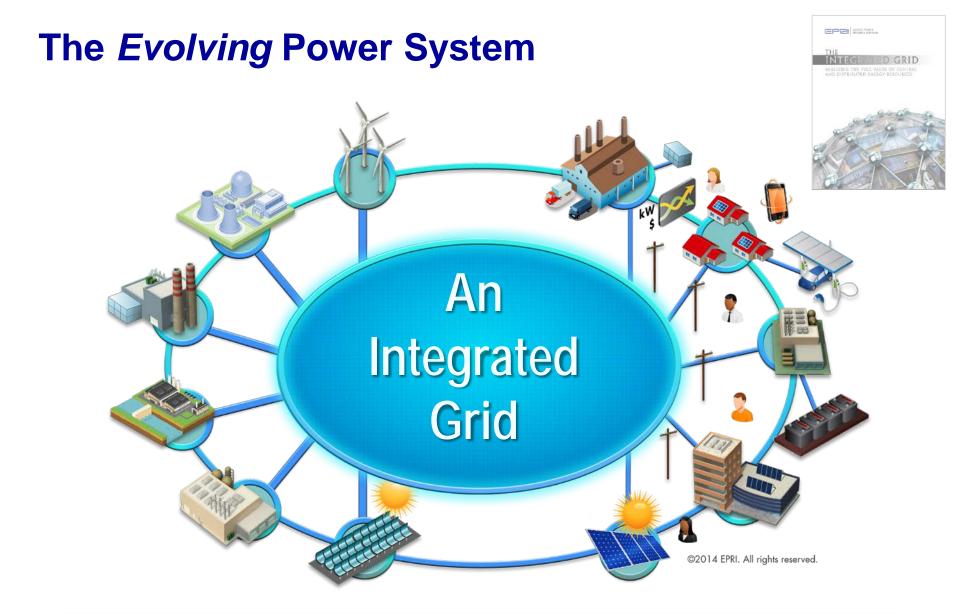

EPRI Integrated Grid Framework and Applications

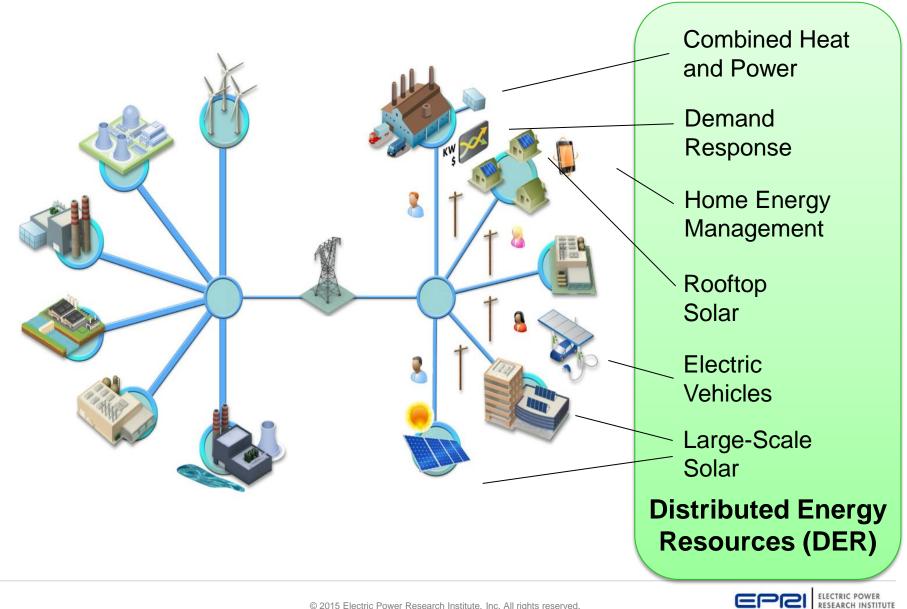
Valuation of Transactive Energy Systems Technical Meeting PNNL Richland, WA


Erin Erben, Eugene Water & Electricity Board Jeff Roark, EPRI

© 2015 Electric Power Research Institute, Inc. All rights reserved.

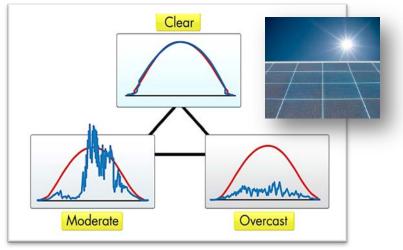
Overview of Integrated Grid Benefit/Cost Framework Erin Erben

Dynamic Power System Requires an End-to-End Integrated Approach

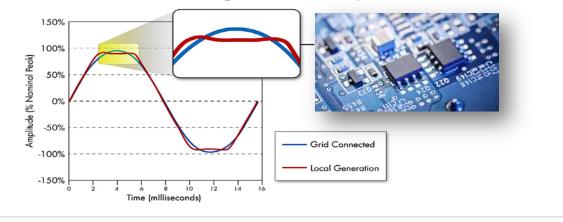

Distributed Generation Resources (DER)

DER are electricity supply sources that fulfill the first criteria below, and one (or more) of the second, third or fourth:

- Interconnected to the electric grid, in an approved manner, at to below IEE medium voltage (69 kV)
- 2. Generate electricity using any primary fuel
- 3. Store energy and can supply electricity to the grid form that reservoir
- 4. Involve load changes undertaken by enduse (retail) customers specifically in response to prices or other market-based incentives


Resources Considered by the Framework

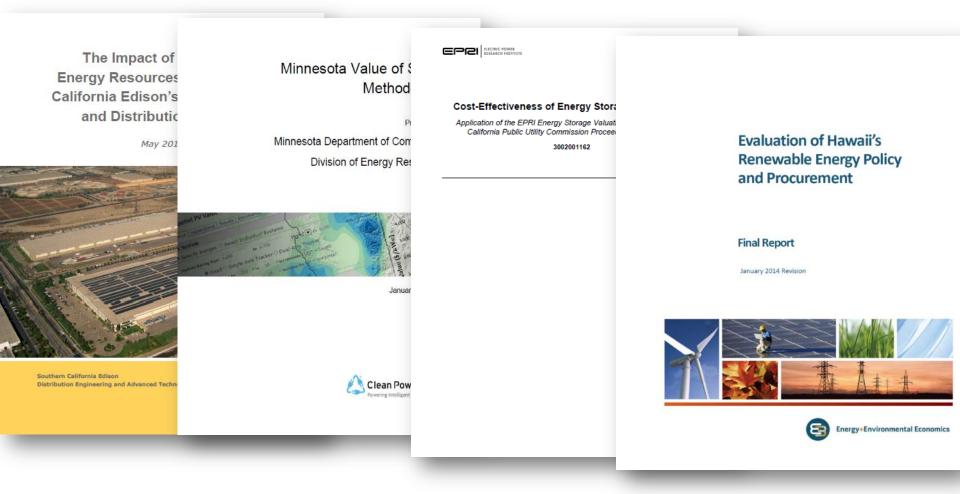
EP


The Challenge – A Few Examples

24 by 7 Electricity

Startup Power

Voltage Quality


Strategic Planning with DER

Analytical process must be consistent, repeatable, and transparent

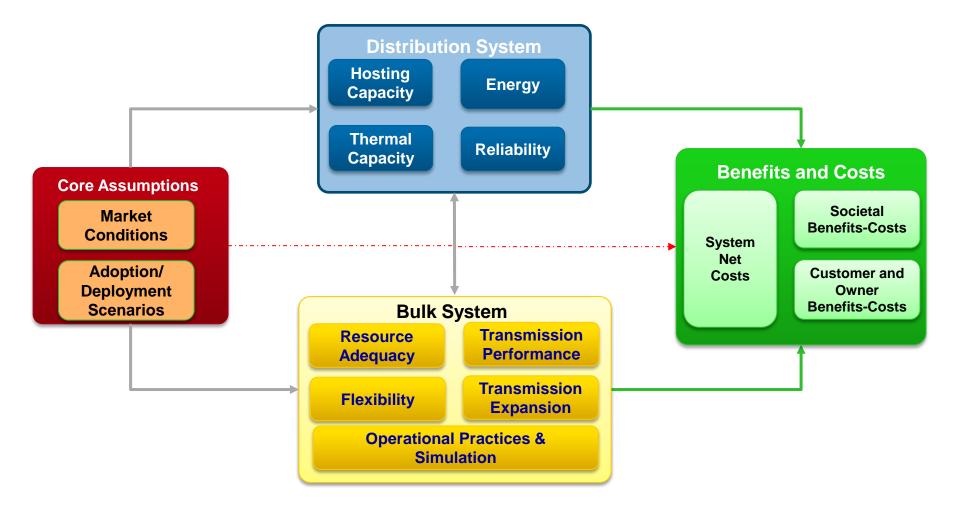
Integrated Grid Benefit/Cost Framework Building Upon Prior Efforts

Need comprehensive approach: connecting all puzzle pieces

Value of Solar Study Comparison

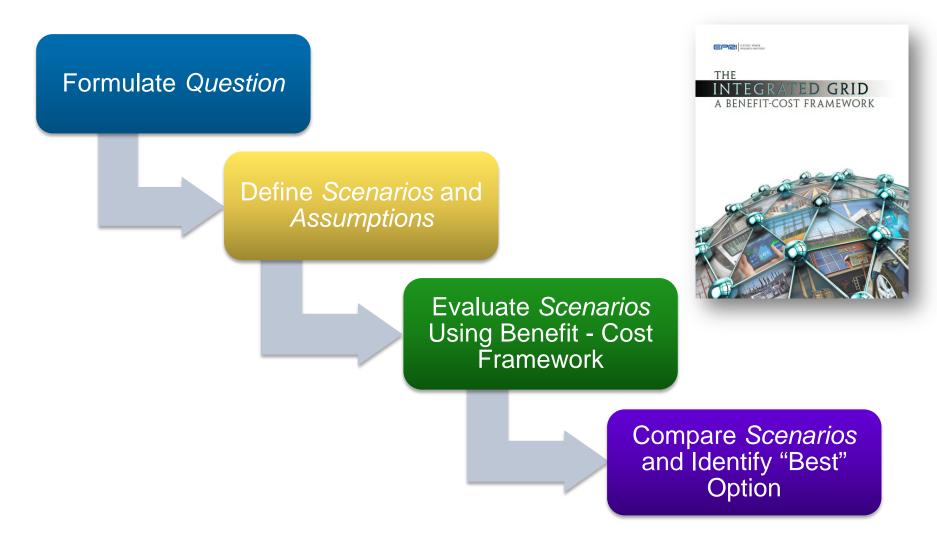
		Comparison of Value of Solar Studies																		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	Author	Vote Solar	R. Duke	Clean Power	Navigant	RW Beck	E3	LBL	E3	LBL	Clean Power Res	APS	Xcel	Princeton	E3	IREC 1	Clean Power Res	Solar SA	Cross- border	Cros-Borde
	Benefit Category	20	05	2006	2008	2009	2011		2	012					2013					
					·			benefits only		meta- analysis				round-table		meta-analysis				
1	Customer costs				x				x											
2	Energy Benefits	x	х	x	x	x	x	х	х	x	x	x	x	x	x	x	x	x	x	x
3	Capacity (Gen)	X	<u>x</u>	<u>x</u>	x	<u>x</u>	x	<u>x</u>	<u>x</u>	<u>x</u>	<u>x</u>	<u>x</u>	<u>x</u>	x	x	<u>x</u>	<u>x</u>	x	<u>x</u>	<u>x</u>
4	Financial Risks		x	х	x					?	х		х	x	х	х	х	х		х
5	Capacity (T&D)	х		х	x	х	х		х	?	x	х	х	x	х	x	x	х	x	x
6	Grid Support Services				x		х	x	х	?				x	x	х			x	x
7	Security Risk				x									x		х	x			
8	Environmental Benefits	х	x	х	x		х		х		x		х	x	х	х	Х	х	x	х
9	Social Benefits				X		х							X		Х	Х			

- Only *Energy Bene*fits (row 2) and *Capacity (row 3)* were included in all studies
- Only 1 study (col 4) included all 9 benefit categories
- Some trend toward being more inclusive of categories (2013 vs, 2010)
- Recent new categories:
 - Customer satisfaction
 - Hedging savings
 - Market animation



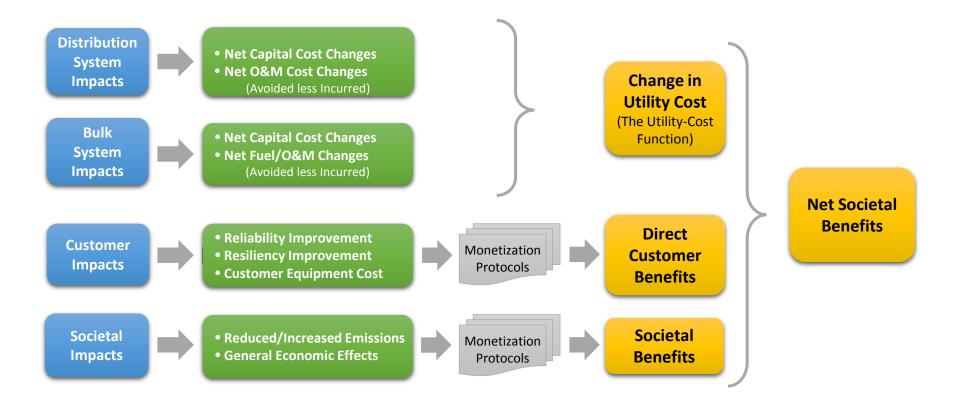
Shortcomings of a Value-of Approach

- Futility of trying to unpack retail tariffs
 - You can't reverse-engineer retail rate constructed for bottom-up cost of service protocols and the art that goes into rate making.
 - Benefits and cost don't align fully with rate-making or accounting categories
 - No way to ensure there is no double counting or know what we don't know (missed benefits and cost)
- Need to trace impacts from source to sink
 - Locational impacts are the source
 - Effects on system (market) operation are the final sink
 - Along the way there are many transformational situations that effect the flow of costs and
- CBA, not just benefits
 - Decision makers should consider all implications of an investment
 - CBA allows comparison of alternatives


EPRI's Integrated Grid Benefit - Cost Framework

Analytical Process that is Consistent, Repeatable and Transparent

Steps to Apply Cost-Benefit Framework



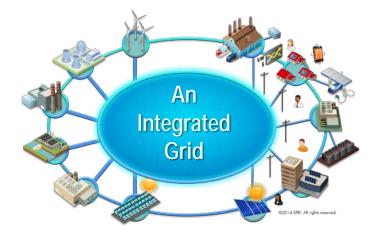
Features of the Benefit-Cost Framework

- Comprehensive: Can include any quantifiable impacts from distribution to bulk system, with or without externalities
- Flexible: Designed to address a variety of economic questions from a variety of perspectives
 - Can adopt
 - a utility-planning perspective for guiding decisions, or
 - a broader societal perspective for policy implications

EPRI's Benefit-Cost Framework

DER Impacts → **Benefits and Costs**

Element	Impacts	Benefit	Cost
	Loss Reduction	٠	
	Capacity Upgrade Deferral	•	
	Reconductoring		•
	Line Regulators/STATCOMS		•
Distribution	Relaying /Protection		•
	LTC accelerated wear		•
	Voltage upgrade		•
	Smart Inverters	•	•
	0&M		•
	Generation Mix/Requirement Changes	•	•
	Deferral of Transmission Upgrades	•	
	Transmission losses	٠	
Bulk Power	0&M	٠	•
System	System Fuel Savings		
	Congestion	٠	
	System Operations/Uncertainty		•
Customer	DER Investments		•
	Emissions - CO2/GHG, Hg, SOx, NOx	•	
Societal	Cyber Security		•
Societal	Health	•	
	Macroeconomic effects	•	



Some Overarching Issues

- Who is responsible for achieving an IG
 - Area with organize whole market
 - Federal Power Agencies
 - Vertically integrate utilizes
 - MUNIs and COOPs?
- What role does pricing play is achieving an IG?
- Should a Transitive Energy System be subject to a Cost/Benefit Analysis?

Applications Integrated Grid Benefit/Cost Framework Jeff Roark

Questions

Distribution Impacts of DER

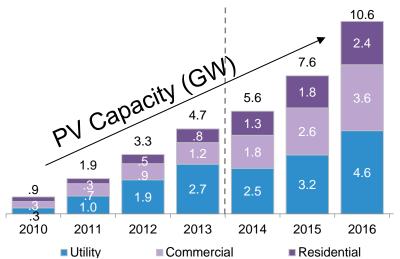
Jeffrey D. Roark Electric Power Research Institute

> Transactive Systems Valuation Technical Meeting

> > PNNL Richland, WA July 7, 2015

Distribution System is Changing

Landscape

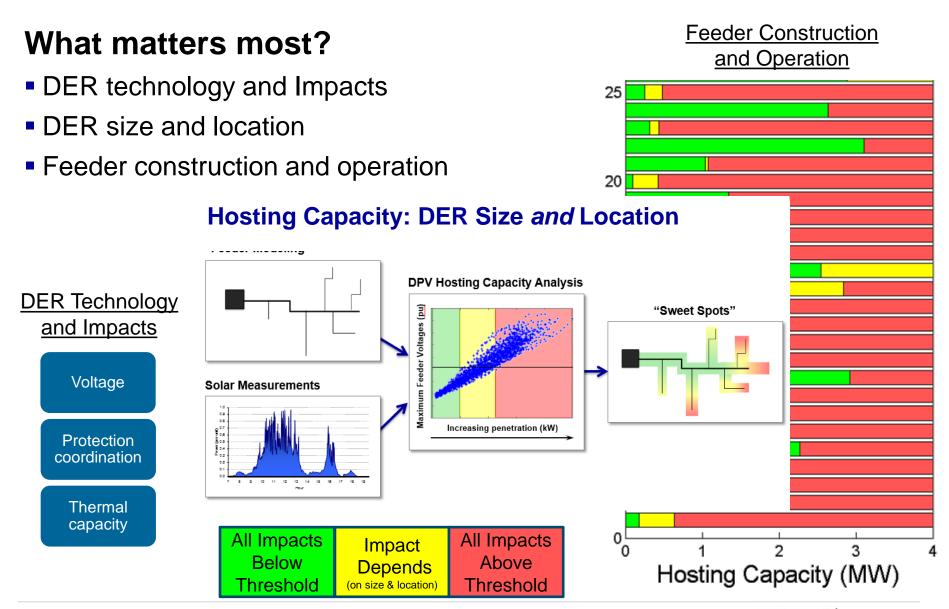

- Most new gen connecting at grid "edge"
- The "edge" is the distribution system
- Distribution has least amount of utility visibility/control

Drivers – Disruptive Innovations

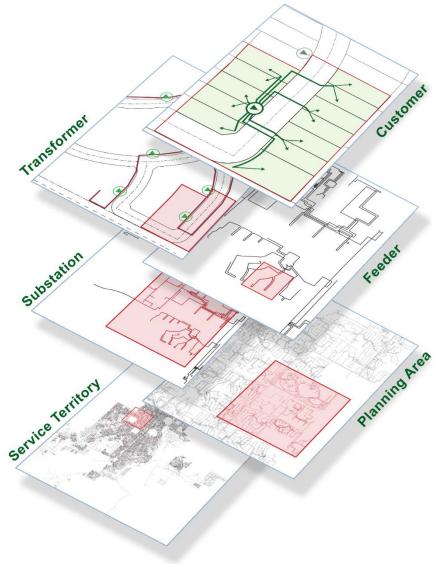
- PV/wind
- Dispatchable resources (ES, CHP, etc..)
- Zero Net Energy homes
- Microgrids

Challenges for Utilities

- Accommodate disruptive innovations
- Improve efficiency
- Incorporate demand response
- Increase resiliency
- The list goes on...



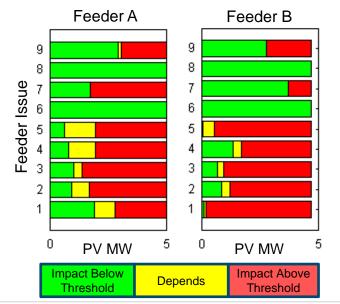
Solution is to be smarter at modeling, planning, and integrating.


Distribution Systems Respond Uniquely to DER

Distribution System is Immense in Scale

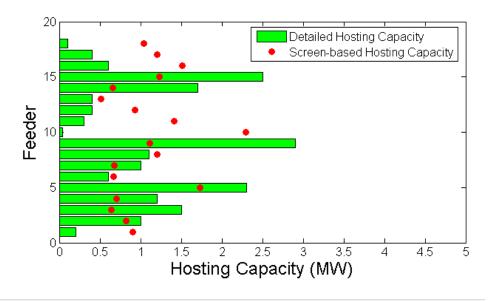
Typical Distribution Utility	Number
Distribution Service Territory	1
Distribution Planning Area	1's - 10's
Distribution Substations	10's - 100's
Distribution Feeders	100's -1000's
Distribution Transformers	1000s - 1,000,000's
Distribution Customers	100,000's - 1,000,000's

Distribution diagrams courtesy of Salt River Project



Current Analysis Methods Aren't Sufficient

- Detailed system analysis requires significant time/resources
- Work-arounds have included:
 - Detailed analysis on select feeders and extrapolating results to others
 - Simplified screening analysis on all feeders


Extrapolation Problem:

Similar feeders with different results

Screening Problem:

Under and over conservative results

New Methods are Needed

Capture what matters most:

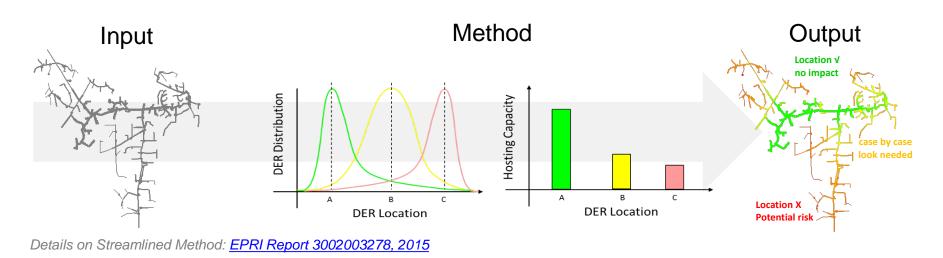
- Size and location of DER
- Unique response characteristics of the distribution systems
- Unique DER technology

Granular	Capture unique feeder-specific responses	
Repeatable	 As distribution feeders change 	EPRI's Streamlined
Scalable	 System-wide assessment 	Hosting
Transparent	 Clear and open methods for analysis 	Capacity
Proven	 Validated techniques 	Method
Available	Utilize readily available utility data and tools	

Key Components of an Effective Method

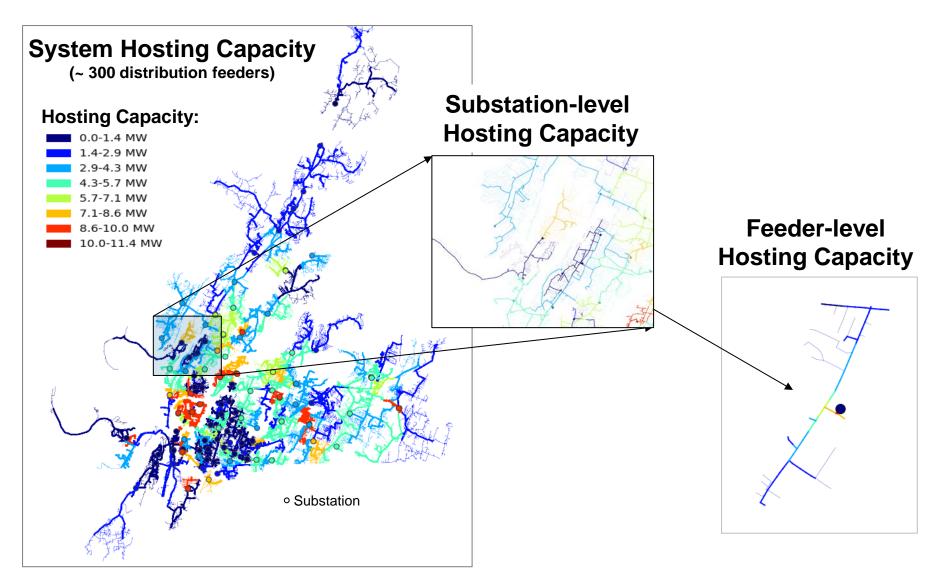
Streamlined Hosting Capacity Method – What is it?

The Input


- Utilizes existing planning tools
 - CYME, Milsoft, Synergi

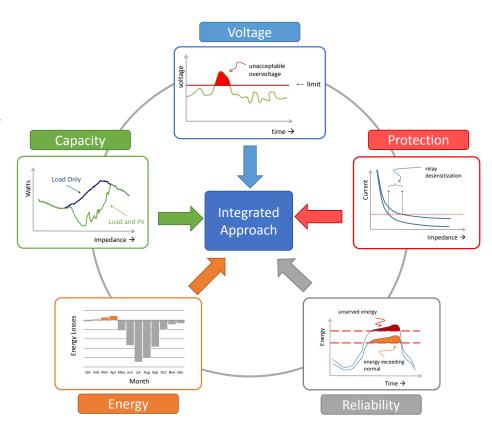
The Method

- Developed from years of detailed hosting-capacity analysis
- Validated and open methods

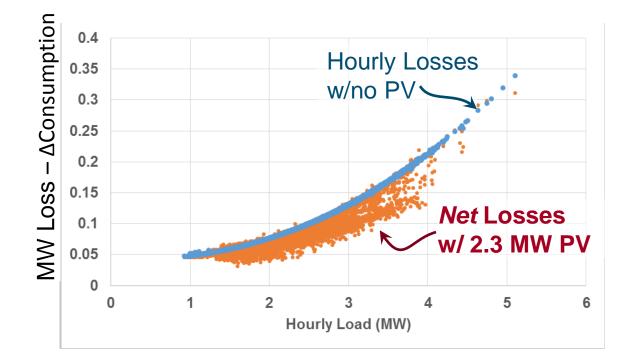

The Output

- Effectively and efficiently analyzes each and every feeder in system
- Considers DER size and location
 - Small distributed and large centralized DER
- Considers DER technology and impacts
 - PV, wind, storage, etc.
 - Voltage, thermal, protection

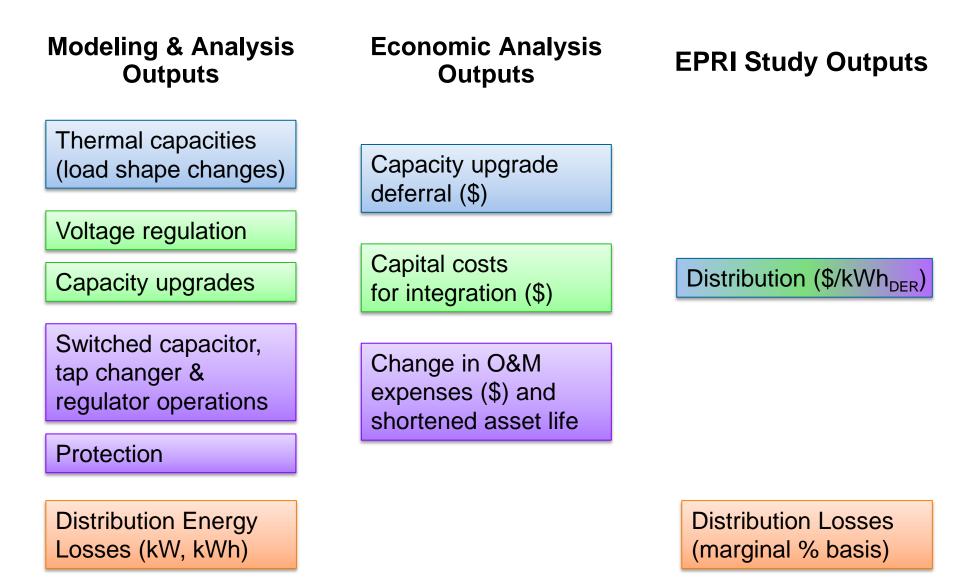
Sample Results from Integrated Grid Projects



Initial analysis results from in Integrated Grid study, results preliminary


Hosting capacity analysis is only the first step...

- Accommodation at Penetrations Beyond Hosting Capacity
 - Voltage Limits
 - Protection Issues
- Thermal Capacity Analysis
 - Deferral of upgrades
 - Loss of life
- Energy Analysis
 - Distribution losses
 - Energy consumption
- Cost/Benefit Analysis


PV Reduces Losses... But May Increase Consumption

The important quantity is net loss reductions.

Cost/Benefit Analysis Considerations

Sample Results: Upgrades to Mitigate Voltage & Protection Issues

Impact Area	Technical Objectives	Upgrades Considered	
		Reconductoring	
	Mitigate	Service transformer replacement	
Voltage	adverse voltages and/or additional	Service upgrade	
	control operations	Add voltage regulator	
		Smart inverters	
		Directional relay/settings	
		Reconductoring	
Protection	Mitigate inadvertent protection operations	Grounding recloser/transformer	
	protocilori operatione	Breaker replacement	
		Direct transfer trip	

Sample Voltage & Protection Assessment Results Example Feeder (.5 MW and 1 MW Cases)

20-yr Levelized ¢/kWh-generated Beginning 2016

Mitigation Option Non-Opti			Optimal				
500 kW Scenario (Voltage Issues Only)							
Option 1	Reconductor 1mi of 3ph	2.00	Reconductor 0.3mi of 3ph	0.60			
Option 2	Add Voltage Regulator	0.79	Add Voltage Regulator	0.79			
Option 3	Smart Inverter 0.01 Smart Inverter		0.01				
1000 kW Scenario (Voltage Issues Only)							
Option 1	Reconductor 4.9mi of 3ph Upgrade 2 services	4.91	Reconductor 3mi of 3ph Upgrade 3 services	3.01			
Option 2	Add Voltage Regulator Reconductor 3.5mi of 3ph	4.05	Add Voltage Regulator Reconductor 1.6mi of 3ph	2.15			
Option 3	Smart Inverter	0.01	Smart Inverter	0.01			

© 2015 Electric Power Research Institute, Inc. All rights reserved.

Sample Voltage & Protection Assessment Results Example Feeder (2 MW Case)

20-yr Levelized ¢/kWh-Generated Beginning 2016

Mitigation Option	Non-Optimal Location	Cents /kWh	Optimal Location	Cents /kWh			
2000 kW Scenario (Voltage Issues Only)							
Option 1	 Reconductor 11.4mi of 3ph Reconductor 7 mi 1ph Upgrade 15 services 7 xfmrs Directional relaying at sub 	7.39	 Reconductor 11.4mi of 3ph Reconductor 7 mi 1ph Directional relaying at sub 	7.36			
Option 2	 Add 3ph Voltage Regulator (15y) Reconductor 11.4mi of 3ph Reconductor 7mi of 1ph Directional relaying at sub 	7.58	 Add 3ph Voltage Regulator (15yr) Reconductor 11.4mi of 3ph Reconductor 7mi of 1ph Directional relaying at sub 	7.58			
Option 3	 Smart Inverter 600 kvar capacitor bank Reconductor 2mi 3ph Directional relaying at sub Line recloser 	1.30	 Smart Inverter 600 kvar capacitor bank Reconductor 2mi 3ph Directional relaying at sub Line recloser 	1.26			

(Specific to a set of financial and economic assumptions)

Summary Results for 3 Unique Feeders

- K3 and S1 allowed no capacity deferral because of headroom on the feeders.
 On K2, PV allowed deferral of a transformer upgrade by one year (year 20→21).
- Mitigation of voltage and protection issues was required for feeders K2 and S1, mostly for over-voltage. Protection issues appeared at high penetrations.
- PV reduced losses in all cases, but rising voltages caused consumption to increase.

		Feeder K2	Feeder K3	Feeder S1		
	PV MW	20-yr Levelized cents per kWh-generated beginning in 2016				
Capacity Deferral	0.5 MW 1 MW 2 MW	15 ¢/kWh	0	0		
Accom- modation Costs	0.5 MW 1 MW 2 MW	.01 to 2 ¢/kWh .01 to 5 ¢/kWh 1 to 7 ¢/kWh	0	0.64 ¢/kWh 0.3 to 0.8 ¢/kWh 0.2 to 0.8 ¢/kWh		
Loss A	nalysis	F	Percent Change in Losses			
Losses ((line & core)	-5.4% per MW _{PV}	-2.2% per MW_{PV}	-2.4% per MW_{PV}		
L	osses (net)	6% per MW_{PV}	-0.5% per MW_{PV}	-0.3% per MW_{PV}		

Case Study Results - Key Insights

Key Insights

- Each feeder has a unique technical impact from various levels of PV.
- Utility planning practices impact the potential to defer transformer and/or conductor capacity.
- PV *reduces* line losses, but consumption *increases* when voltage increases. There is usually a net reduction of losses.

Thoughts & Questions for Transactive Energy

- Many distribution issues are confronted first in the *planning* timeframe rather than the *operations* timeframe.
- Smart inverters can defer other hardware upgrades in the planning timeframe, but must be operated properly to fulfill this role over time.
- Control of DER in the operating timeframe may be able to stand in place of hardware upgrades. Must it be committed in the planning timeframe?

Together...Shaping the Future of Electricity

Jeffrey D. Roark Technical Executive

Electric Power Research Institute 3379 Lakewind Way Alpharetta, GA 30005 678-325-8971 jroark@epri.com

