DISCLAIMER

Ideas in this presentation are offered for discussion purposes only, and do not reflect the views or policies of the California ISO.
The proliferation of distribution-connected resources (DER) requires re-thinking the T-D interface.

OUTLINE

• Traditional distribution system operation and planning are not adequate for the high-DER future.

• The T-D interface provides a logical focus for re-thinking electric system operation and architecture.

• T-D interface design options & associated DSO functional roles can be represented along a continuum.

• The “minimal DSO” appears to be where most ISO/RTO trajectories are heading.

• System architecture perspectives & methods offer a valuable tool for evaluating design alternatives.

• Structural components, functional roles, business models & regulations should support whole system performance.
Clean energy policies, technological advances & customer demands are transforming the industry.

- Proliferation of distributed energy resources (DER) requires re-thinking traditional electricity paradigms
 - Decentralization trend via growth of diverse, small-scale, local, renewable resources
 - Technology innovation offers greater customer choice & functionality at ever decreasing costs
 - Multi-directional energy flows & varied resource types & behavior patterns on distribution systems
 - Demand for local resilience to major disturbances (micro-grids with islanding capability)
 - Local & behind-the-meter energy production reduces net energy demand & energy-based revenues
 - Dispatchable/flexible DER types may provide reliability services to distribution operators
The T-D interface is a useful focus for thinking about how to design tomorrow’s energy network.

- Transmission: meshed network, high-voltage energy flows, large central-station power plants
- Distribution: radial circuits, lower voltages, local production for delivery to end-use customer premises
- T-D interface: a substation; a pricing node (P-node) in LMP markets; traditional boundary of wholesale-retail markets, operations & regulatory jurisdictions
- As DER proliferate, traditional T-D boundary is eroding:
 - DER participate in wholesale markets
 - DER provide resource adequacy capacity

Question: Should the T-D boundary fade into irrelevance?

Or are there good design reasons to reinforce the T-D interface as an operational, market & regulatory boundary?
The “Integrated Decentralized” Electric Industry Structure

- Each “local distribution area” (D) & its T-D interface with must operate reliably
 - Even though one company may operate hundreds of D areas
- Multi-directional flows within each D area replace traditional one-way energy flows
- Some DER will be “self-optimizing” & able to island (micro-grids, smart buildings)
- Definition of roles & responsibilities of TSO & DSO will drive relevance of T-D interface as an operational, market & regulatory boundary, requiring specific functions of the “distribution system operator” (DSO).
A spectrum of possible designs can be envisioned in terms of the complementary roles of DSO and TSO.

- **Model A** - TSO optimizes the whole integrated system - all the way down into the distribution system
- **Model B** - TSO optimizes the whole integrated system - but only down to P-node level
- **Model C** - TSO optimizes only the transmission system - sees multiple aggregate or “virtual” resources at each P-node
- **Model D** - TSO optimizes only the transmission system - sees a single aggregate or “virtual” resource at each P-node

Relevance of T-D boundary

- **Least**
- **Most**

Minimal DSO

Total DSO
The Minimal DSO seems to be where the current ISO/RTO trajectory is heading.

- Trajectory of mass gravitation of DER to the wholesale market
 - “Because that’s where the money is!” – Willie Sutton
- Model A – (less likely) – the TSO market optimization models distribution circuits, models DER at actual locations
- Model B – (more likely) – the TSO market optimization stops at the P-node, models DER at the P-node
 - TSO dispatches DER without knowing impacts on distribution system & feasibility of multiple dispatches at a given P-node
- Under A or B the TSO market optimizes 10,000s of individual DER above a low size threshold (100 kW)
 - Minimal DSO performs minimal coordination of DER to maintain reliability & support local DER transactions & responses to TSO dispatches

“If we don’t change direction soon we’ll end up where we’re going.” – folk proverb
System architecture perspectives & tools can help assess the design alternatives.

A “system architecture” is a model of a complex system that enables us to think about the overall design of the system, its attributes & how the parts interact (Jeffrey Taft, PNNL). A system architecture helps us address questions like:

• How does the combined T+D grid behave as a whole system?
• What is the control structure for the whole T+D system? What’s the ideal control structure to achieve public policy objectives?
• How do grid controls interact with, facilitate or limit wholesale & retail market transactions? Facilitate or inhibit innovation?
• How do autonomous DER behaviors interact with TSO & DSO functions? How can micro-grids, smart buildings & flexible DER provide services to the DSO?
• If the future involves proliferation of DER, how should distribution company roles & responsibilities change? How would different models of change affect such issues as grid control, markets, innovation, system security, regulatory oversight & achievement of policy goals?
Simplified architecture diagrams show key differences between models A-B-C versus model D (Taft).
The system architecture perspective offers observations on the models we’ve been discussing (Taft).

<table>
<thead>
<tr>
<th>Models A-B-C</th>
<th>Model D</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Structurally problematic</td>
<td>• Structurally sound</td>
</tr>
<tr>
<td>• No formal basis</td>
<td>• Repeatable structure</td>
</tr>
<tr>
<td>• Tier bypassing leads to destabilization</td>
<td>• No tier bypassing</td>
</tr>
<tr>
<td>• Ad hoc form limits understanding of properties</td>
<td>• Normalized form allows for property design & analysis</td>
</tr>
<tr>
<td>• Emergent (i.e., unintended, surprising) behavior</td>
<td>• Boundary deference</td>
</tr>
<tr>
<td>• Scalability is challenged</td>
<td>• Coordination/constraint fusion</td>
</tr>
<tr>
<td>• Unnecessary connectivity raises extra cyber-security issues</td>
<td>• Scalable implementations are feasible</td>
</tr>
<tr>
<td></td>
<td>• Connectivity & data flow patterns easier to secure</td>
</tr>
</tbody>
</table>
What might an integrated decentralized electric system with a total DSO look like (model D)?

- DSO aggregates & coordinates all DER & end-use loads within each D area, submits single bid to ISO at P-node
 - ISO/RTO sees a single resource at the P-node
 - DSO coordinates local resources to respond to ISO dispatches

- DSO provides open-access distribution service
 - Balance supply-demand within the D area, using interchange with the ISO/RTO for sales & purchases
 - Coordinate real-time operation of DER within each D area, using services provided by flexible DER to support reliability
 - Facilitate & settle transactions between DER & end-users
 - Plan distribution infrastructure upgrades
 - Perform/administer open-access interconnection procedures
 - Operate independent of providers of customer energy services, DER operators & distribution system owners
Today’s municipal utilities provide a limited model for the total DSO

- Municipal utility embedded within ISO system manages all DER & end-use customers within its local system
 - Appears to ISO/RTO as a single resource at the P-node
 - Balances supply-demand within its local area, using interchange with the ISO/RTO for needed sales or purchases
 - But … municipal utility typically owns or contracts with vast majority of supply & serves nearly all internal load

- Total DSO model goes quite a bit further
 - Provides open-access distribution service, including real-time operation, interconnection, infrastructure planning
 - May own or contract with only a fraction of supply & serve small portion of load => far more autonomous actors
 - May operate a local market for customer-DER transactions & reliability services to support DSO operation
Integrated decentralized system may be a layered or nested hierarchy of optimizing sub-systems.

- Design precludes tier bypassing
- Each tier only needs to see interchange with next tier above & below, not the details internal to lower-tier entities
- Allows scalable implementation, mimics natural or biological systems
Other desirable features may emerge in the integrated decentralized energy network with total DSO.

- New business models may emphasize management of volatility, with less exposure to kWh/MWh revenues
 - Settlements between TSO & DSO reflect TSO’s cost of managing inter-temporal volatility of T-D interchange
 - Settlements between DSO & DER/customers in each D area reflect DSO’s cost of managing volatility of DER/customer’s net output or load
 - DER/customers that add variability pay more for DSO services
 - DER/customers that help manage variability can be paid
- Total DSO could operate local markets, eliminate motive for direct DER participation in wholesale market
- TSO can emphasize wide-area coordination, such as:
 - Real-time energy imbalance markets over multiple states
 - Access to renewable-rich areas with minimal new infrastructure
Thank you.