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Abstract

This paper reviews the state of the art in disteduenergy
control systems- decentralised control techniqubat t
coordinate the actions of devices such as elegtiimads or
generators. The paper reviews two recently proposattol
techniques that bring significant advantages oler first-

generation distributed energy or demand management

systems currently being trialled. It introduces thasic
operating principles of these systems, and revi¢hes
challenges involved in realising these techniqugsractical
applications.

1. INTRODUCTION

There is a growing interest around the world in tleaefits
available from more involved control of the demanide of
electricity networks. Essentially, by coordinatinthe

responses of the many small generators or loadstipgin

the electricity network, system-wide gains can éalised.
For business operators, the benefits here candedhetter
network utilisation, more accurate control of loadsd

improved response to system outages. These beragfids

the related costs, are now being explored by many,

companies in deployments around the world, mostlgd-
calleddemand management trials, targeted at improving the
control of loads and small-scale generation inrtstsvork.

Typically,
deployments can be characterised by the methodighro
which they elicit a response from the demand sideurce-
the load or small generator under control. Moshmégues
rely on one or both of the following mechanisms:

Getting a person to change the operating state of@I
load or generator in response to a time—varyingC

these systems are limited by the reliability, or
firmness of response they can offer the network
company.

The network company directly controls the
operating state of a load or generator via a
dedicated communications and control system.
These systems can offer relatively high levels of
firmness, yet can be difficult to scale, as the
technical challenges of controlling many thousands
of devices are not insignificant.

Recognising the limitations of these first genenati
techniques, there are now a number of research
organisations working on more advanced demand side
control systems. Such systems are intended to baing
variety of benefits, including consideration of aauser
preferences, scalability whilst also offering knofwmness,

and minimal requirements for expensive infrastrigtu
Whilst immediately applicable to demand management
projects, such systems are also being considered veasy

for local users to deal with network outage sitmadi for
operating remote area power supplies, and for ¢oatidg
localised generation and control in a way thatdsibenefit

to surrounding users. Such benefits, and the cosysitems
hey are based on, are the subject of this paper.will
review a variety of state of the art demand sidatrod
systems, discussing their benefits and challerigekiding

the steps necessary before these systems are feady

these first-generation demand managementommercial scale deployments.

2. IMPROVED CONTROL OF LOADS AND
GENERATORS

Before describing the most recent techniques being
considered for the control of loads and generatorthe
ectricity network, it is worthwhile first reviewg what the

haracteristics of an optimal control system are.

price- so for example, the customer may disable a
load when the price is expensive, but enable it aA\s introduced above, one of the first measuresuctess
lower prices. Such techniques can scale to veryor a control system managing large numbers of Simatis
large systems- the network company generally onlyand generators is its scalability- how well a gitechnique
needs to communicate a price to the network. Yetan cope when the number of devices under control
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increases arbitrarily. Importantly, in parallel kitany
consideration of the system’s scalability must be a
awareness of the system’s depth of control- whilstmple
broadcast based control system may be highly dealsich
shallow consideration of the implications of cohtraill
significantly limit uptake of such a simple systeifor

example, consider a simple demand management systg

that broadcasts a “turn off’ command to thousanidaiie
conditioners. Without consideration of the opemtin
parameters of those air-conditioners- for examplesther a
homeowner is comfortable, there is likely to be ublic
backlash against this system. Additionally, withoam
awareness of how many air-conditioners were agtwall it
is difficult to obtain any degree of firmness ofspense
from such a system. Thus, not only is scalabiliyportant,
but the control technique must have a reasonakéhdef
control- it should consider local device constraigstich as
temperature boundaries for loads such as air-dondig or
refrigeration, fuel costs for generators, and so on

Whilst, as introduced earlier, a firmness of resggons
necessary in a well performing control system, finlness
should continue through changing system conditisnsthe

Figure 1. Agents used for controlling various loads and oiicr
generators in a residential setting

demand side of the system- initially for applicatiin
demand management programmes, but later as a way of
intelligently managing low-level network behaviouAn
example deployment of a system of agents being tsed

control system should be dynamic and responsivénanage the consumption and generation of elegtrigita

Additionally, the optimal control system should k@bust
against attack or failure- there should be no singbint
whose failure will jeopardise the operation of thetire
system.

Given these desires- a system that provides firgyngst
considers local user constraints, is scalable andrespond
dynamically to network conditions, many researchars
trending away from the more traditional controlheiques
used in electricity systems. Such centralised obntr
systems, where a large central controlling entitgkes
decisions and communicates these to the wider mkpaoce
increasingly being pushed to their limits [1]. Towing
complexity of control needed, particularly whenedaowith
the large, diverse range of devices operating etddmand
side of the network, means that centralised cordystems
are facing significant challenges of reliabilitydascalability
[1], [2]. Given these limitations, the research coummity is
trending towards a decentralised approach to tiraoof
electricity networks. Such techniques often empdayent-
based technology, where the overall behaviour ®@fifstem
emerges from the behaviour of individaglents- individual
smart devices that manage particular network corpisn
and communicate with each other to achieve givehall
goals.

In work such as [2], [3], these decentralised adpased
techniques are considered for the control of neddyilarge
network assets, with a focus on applications ssahedwork
protection, system operation and restoration aftgage. In
this paper, we are more interested in the use adritealised
control techniques for managing loads and genesatothe

Grid-Interop Forum 2007

residential situation is shown in figure 1.

This is a relatively new application of this teclogy, and

is quite different in approach to the first genienat
techniques currently operating in the demand side o
electricity systems. In the following sections weview
some of the most significant work in this area.

3. CONSUMERS AND SUPPLIERS- MARKET
TYPE CONTROL SYSTEMS

One of the fundamental challenges when wantingesigth
a sophisticated, flexible control system is meetimg often
conflicting requests of individual components o gystem,
whilst trying to steer the system to a common gae.
mentioned in the previous section, whilst centealisontrol
systems may be able to find solutions to a giverblem
using powerful computational analysis, the compiexf
modern electricity scenarios means that commuioicati
and computational overheads become a significaniii@m.

Decentralised agent based techniques are an id@altov
address this- they attempt to push much of thelloca
computational load back on to the local agents, ninga
local constraints can continue to be consideredilstvh
system goals are still achieved. To resolve theenoft
conflicting requirements of multiple agents, onela most
common techniques used is to construct a “markeétgre a
currency is introduced to the system, and locahtgwiill
negotiate with a broker to determine the cost efrttesired
action.
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Running a successful market based system for dbn¢gro

demand side energy devices is a challenging anctlnov

concept, and thus there has recently been a sgntfi
amount of research dedicated to this area. Wlitstdd to
simulations, Ygge’s work in [4] introduced the cept of a

market for managing generation supply and demand.

Further theoretical analysis considered featuresbath
economics (for the market) as well as control thedo
prove the validity of this basic approach [5], [Mlost
recently, this work has resulted in an algorithait thas been
trialled in practical deployment-
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the Powermatcher

algorithm. As described in [7], the main goal of Fijgure 2.The hierarchy of the market-based coordination

Powermatcher is to match the supply available froamy
small electricity generators operating in a mirdgnvith a
variety of small loads operating in the same midigr

In the market-based control paradigm, each load
generator is considered as a resource agent (Ré)there
exists a broker agent (the “SD Matcher”) whose &nto
fairly distribute the limited generation resourcasiongst
the consumers. Resource agents issue bids to tiesrbr
agent, consisting of a proposed demand or supygaten
price. The broker evaluates all the bids, and asljtise
resource price in an attempt to make the total estpal
demand equal to the available supply. Thus, prezmines a
signal of the relative scarcity of generation catyaat any
given time- agents will continuously revise theiid,b
ensuring that the total amount of resource reqdesie
offered (and thus its cost), matches the valuedfigrihey
will gain from the resource.

Particular resource agents will always strive ttimjse the
economics of their operation (minimise cost for dea
maximise revenue for generators), but are congdainy
local parameters such as temperature boundaried,
supply, etc. Thus, the local constraints of an agme

implicitly recognised in the market process- foamwle, in
a refrigerator agent if turning off the load withst too much
due to goods spoilage, then the agent will bidgh Ipirice so
it can consume electricity. This selfish behaviodfirlocal

agents causes, over time, electricity consumptionbé

moved into periods of low price, and electricityngeation
to be moved into periods of high price. As a resaulinatch
between supply and demand gradually emerges aidbal

system level.

To deal with very large systems of loads and geoesa
Powermatcher uses a tree structure of brokers ¢oipgr
market functions, as shown in figure 2. Here, atiebly
small group of agents communicates with one pddicu
broker, and the functionality of these brokersdgragated
upwards. The broker at the root of the tree (whuoisaware
of whether the agents below it are other brokersaabual
resource agents) forms a price for the entire ne¢wand
this price then propagates through the other beotewn to
the bottom of the tree.
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techniqu

Powermatcher has been tested in a variety of depays.
o one deployment Powermatcher was used to codgelina

the power outputs of loads such as cool stores and

residential properties, with a variety of distribdt
generation including residential combined heat poder
(CHP) plant, diesel generator sets and wind fairhe. aim
of the coordination was to attempt to level thepotiof the
combined set of loads and generators, relativesituation
where there was no coordination of the devices [8].
another trial, the Powermatcher system was useddoce
the peak load on a residential sub-station by doatithg
the output of many micro (1kW) CHP plant [9].

4. CAP BASED COORDINATION

In contrast to the market based work described him
previous section, CSIRO has been exploring an dessn
centralised way of coordinating the behaviour ggety of
agents controlling distributed energy resources.

t

fuCSIRO’s coordination algorithm is based around four
entities- a collective of resource agents, one arem
brokers, an information repository (or “bulletindsd”), and
a summing agent. In the system, resource agentstipdar
local electricity demand for some period into theufe, and
then place these plans (which consist of simpleestants
of power consumption per interval of time) in toeth
information repository. The plans for all the agermre
summed by the summing agent, to get the total piedi
power demand for a particular time interval. Thisnsis
then made available to the resource agents, as asel
demand cap figure, which indicates a desiradl power
consumption, for all agents, in the given time tivé& The
power cap is set by the broker agent, based omnnaftion
such as prices from electricity market brokers,status
information from network operators.

Once a resource agent has observed the total powecap
figures, it will then try and modify its planned wer
consumption, to minimise consumption during intésva
where total planned consumption is greater tharcépe In
modifying its power consumption, a resource ageilt w
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Figure 3. Operation of the cap based coordination method,
including steps for resource agent (RA) future plag (1),
submission of plans to the information reposit@), éum and
cap setting (3), and retrieval of these from tHerimation
repository (4).

attempt to shuffle its power consumption into adjgdime

discussed have been implemented in real-worldstraatd it

is worthwhile discussing some of the common
interoperability and implementation issues encawaten
these trials.

5.1. Intelligent local devices- the ability to model and
plan
One of the key components needed for operatiorothf the
market and cap based coordination techniques isofa
resource agents (say, loads or generators) to he tab
model and plan their behaviour. In a market basbe¢rae
such a model is needed to evaluate the cost opeejsred
to accept for a given action, whilst in the capesok a
model is needed so the agent can submit a plais &fture
consumption. Given the dynamics involved, formatimi
such a model may not be a trivial process. For @am
consider the situation of a resource agent beisgcited
with a large cool room. Refrigeration plant such casl
rooms makes up a very significant percentage otralis’s
electricity load, and is thus an ideal candidatedpnamic
control. Most importantly, cool rooms have sigrafit
thermal mass, meaning that they are essentially a

intervals, creating a new planned power consumptiojiscretionary load- they can be turned off for aiqué of

profile. In forming this profile, resource agentdl\always

time, with little effect on the operation of theat@oom, but

respect their local constraints (such as tempeFaturpotentially great benefit during times of netwodastraint.

boundaries)- a resource agent will continue to cores

To participate in a market or cap based coordinatio

energy in an interval that has excessive total POWetechnique as described in this paper, the resoagent

consumption, if it needs to due to local constgint

Resource agents submit the revised power consumplam
to the information repository, these are summatk\a total

controlling a cool room will need to plan operatiohthe
cool room for some time in to the future. To dosthhe
resource agent will need a model of the cool rogont can

power sum made available, and so on. This proceégetermine when the refrigeration plant will needrtim in

continues to iterate until the cap is met, or thenber of

order to maintain the cool room’s temperature witgiven

system iterations exceeds a predetermined thresholfoundaries. Such a model must be dynamic- it shoojm

indicating the cap simply cannot be met for theegiv
interval. It is important to note that the entireqess here is
asynchronous- no explicit coordination is needetiveen
plan submission, summing and cap setting.

The various steps involved in the cap coordinatontrol
technique are shown in figure 3.

This cap based coordination approach has beendtéste
both simulation and practice, controlling real #letty
loads such as refrigerators. We have analysed iatyaof
features, such as how long the system takes toecgevo
satisfactory consumption plans for different powestuction
goals, or the amount of warning agents need bedocap
will occur, in order to be able to shuffle their vper
consumption around to meet the given cap.

5. INTEROPERABILITY & IMPLEMENTATION

ISSUES
The previous two sections discussed the stateeofthin
control systems for realising a common outcome fram
group of distributed network resources. Both thahitgques
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with different stocking conditions of the cool ropand will

need to consider ambient weather conditions, lueatsl and
so on. We use so-calleghachine learning techniques to
learn this model of the cool room, which are esalinta

“black box” learning technique- we are able to fammodel
of the cool room’s behaviour with minimal understang of

the internal operation, or first-principles chasgadtics of
refrigeration plant. More specifically, we use apport

vector machine (SVM) based learning method, a tecien
which has been of significant interest in recergesgch
publications- see for example [10].

Basically, the SVM model “watches” the cool room’s
behaviour during normal operation, collecting saber
heating/cooling cycles worth of temperature and
refrigeration plant (on/off) data. This data is dige train a
learning model of the cool room, which essentidilhds a
characteristic system temperature curve. This inode
then be time-stepped into the future, providing uaate
temperature predictions of the system.
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Figure 4: Operation of the machine learning technique faeaining a thermal model of a cool room

This learning behaviour can be seen in figure 4jclwh cool rooms. We have experimented with a variety of
shows the training samples, the predicted and hctugomputing platforms for running these models, frtrim-

temperatures for a period of cool room operatidnisl
interesting to observe the behaviour of the sysé¢rime

17.54, when the cool room door being opened caases

spike in the internal temperature. The learning ehadas
able to identify this sample as having a minorctffand so
the contribution of this training data to the patigie model
is minimal. This is a key advantage of SVMs- ttaility to
intelligently filter outlying data points, and mddaon-

obvious system subtleties like overshoot and leakalgich
affect the fitting samples.

The types of models discussed in the precedinggpaphs
are critical to the operation of an intelligent afyshamically
reactive electricity control system. As another regée,
consider a renewable energy generator such as @ avin
solar plant- for such a generator to participate
coordination systems such as those introducedismptiper,
it will need to determine the electrical power ianc
contribute some time in the future. This is a avading task
for renewable energy systems with intermittent sumind
availability, and CSIRO has spent a significant amoof

time working on machine learning techniques thah ca
autonomously form models of dynamic systems such as

renewable generators or thermal loads. Details hekd
techniques can be found in [11].

5.2. Implementation Challenges

A key feature of the learning and modelling techeis
described in the previous section is the need femaonable
computational ability at each resource agent, soatent
can run these modelling algorithms. Our experigadbat a
variety of economical and reliable controllers arew

available for associating with plant such as geoesaor
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client based devices, to personal digital assigRDA) type
platforms.

Another challenge to the implementation of distrézl
systems such as discussed in this paper is the foeeal
communications network to link the various agemisthe
system. At face value such a requirement does @eins
particularly arduous- reasonably reliable, highotlghput
communication networks are almost ubiquitous now.
However, the practical implementation of such systdas
proven challenging- we have encountered issuesasich

Maintaining  connectivity

through
corporate firewall systems

different

Given the plethora of communication platforms
currently available, it is difficult for utilitieso
invest in a given technology with any confidence,
particularly considering the long (10 year plus)
investment cycles typical to electricity networks

in

Ensuring the multi-agent system performs reliably
and intuitively when faced with the brief but
common communications outages typical to

modern Internet protocol (1P) based
communications systems

These challenges are gradually being mitigated dmemnt
standardisation activities focussed on introducialigble,
ubiquitous and economical communication systengetad
at electricity network operation and control. Fo@ample,
the recent IEC61850 standard is aimed at applyamgneon
IP based communications techniques to the contfol o
electricity network infrastructure, but with the cessary
reliability and robustness built in [12]. Anotheelevant



Platt

standard to our work is the Standards Australimdged [4] F. Ygge and H. Akkermans “Power Load Manageimen
AS4755, targeted at creating a standardised conuatiomns  as a Computational Market”, Proceedings of ICMASDA.
system for the control of distributed energy desifE3]. In  [5] J. M. Akkermans, J. F. schreinemakers, J. Kk Ko

the scenarios envisaged by the IEC61850 and AS475%mergence of Control in a Large-Scale Society of
activities, the resource agents as discussed 8 ghper Economic Physical Agents”, Proceedings of the

might reside on a smart meter appliance, or horaéetgay” AAMAS’'04 conference, 2004.

product, thus addressing the communications angb]l.g. Kamphuis, J. K. Kok, C. J. Warmer, M.FP.

computation functionality requirements discusseavab Hommelberg “Massive Coordination of Residential
Embedded Electricity Generation and Demand Response
6. CONCLUSION Using the PowerMatcher Approach”, The 4th Inteiozi

First-generation demand-side control systems ar@gbe Conference on Energy Efficiency in Domestic Apptias
rolled out in electricity networks across the woalsla way and Lighting, June 2006.

of improving network reliability, managing operaircost  [7] K. Kok, C. Warmer, R. Kamphuis, P. Mellstrari,

and infrastructure investment. Whilst it is cerbpin Gustavssort, Distributed Control in the Electricity
encouraging to see these systems and the beneéits t Infrastructure”, Proceedings of the 2005 Future &ow

bring, such systems have a number of drawbacktedeta  Systems conference, November 2005.

flexibility, consideration of local user constraintand [8] R. Kamphuis, F. Kujiper, C. Warmer, M Hommelger
available firmness. K. Kok, “ Software agents for matching of power supply and

: . . . demand: a field-test with a real-time automatedalabce
This paper introduces two new techniques beingietiuby reduction system”, Proceedings of the 2005 Futonee?
researchers for more optimal control of demand Sid%ystems conferen,ce November 2005

resources such as electricity loads and distribgeeeration [9] M. Hommelberg, C. Warmer, . Kamphuis, K. Kd&

plant. These techniques are based around the delczrd Schaeffer, “Distributed Control Concepts using Malgent

control of such pIant—. th‘?fe.'?' no centralised .etnelnmal technology and Automatic Markets: An indispensable
control system managing individual system devi€sther, feature of smart power grids”, Proceedings IEEE &ow

individual devices are controlled by agents, arsysiem of Engineer Society General Meeting, June 2007
agents negotiates amongst themselves on how tevachi [10] R. v. B. U. Thissena, A.P. de Weijerb WJ. |84ena

desir_ed _outcome, with_ known firmness, and whiIstL_M_C_ Buydens, "Using support vector machinestime
considering local constraints. series prediction,” Chemometrics and Intelligertbdratory
The market and cap based coordination mechanisnfsystems, vol. 69, 2002.

introduced in this paper have both been triallecead-world  [11] G. Platt, G. C. James, J. Wall, S. West, “Titelligent
situations, with encouraging results. Importantiych — Control of Distributed Energy Networks”, Proceedirg
systems require relatively advanced computatiohdityaat  the Energy, Informatics and Cybernetics ConfereR066.
a local load or generator for forming predictivedats of [12] R. E. Mackiewicz, “Overview of IEC61850 and
that resource’s behaviour, and communication neétsvdrat ~ benefits”, Proceedings IEEE Power Engineer Society
can facilitate the inter-agent negotiations neagseameet  General Meeting, June 2006

a system request. Recent standardisation work, thad [13] See AS4755-2007, available from

ongoing growth of cheap, ubiquitous computing andhttp://www.saiglobal.com

communications networks means that these are not

particularly difficult requirements; we thus loo&rfvard to  Biography

growth in the uptake of these intelligent contrgstems in
years to come.
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