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Abstract 

The purpose of this paper is to develop a methodology 

that utilizes reliability-based optimization to solve 

complex electrical grid usage problems.  With electrical 

power grids, as with many complex systems, complicated 

decisions must be made at both the local (user) and 

global (electricity provider) levels; all decision makers 

have independent, often conflicting, objectives, further 

complicating the decisions.  In order to incorporate both 

levels of decision making (and resulting interaction 

effects between the decision makers), a reliability-based 

optimization approach can be utilized which 

incorporates local decision makers’ preferences by 

enforcing probabilistic constraints on the overall 

optimization problem (e.g., sectors A and B need a 

particular amount of power and each sector has a 

different criticality level).  This ensures that the 

optimized decisions made at the global level satisfy the 

basic requirements of the local decision makers (e.g., to 

deliver power to critical sectors).  The uncertainty in this 

approach is incorporated through an efficient first order 

reliability method (FORM), an analytical approximation 

to failure probability calculation, rather than 

traditional, computationally expensive simulation-based 

methods (such as Monte Carlo sampling).   Usefulness of 

this methodology is shown through several example 

problems. 

1. INTRODUCTION 

As demand increases nationwide for electrical power, the 

nation must look for intelligent approaches to managing 

electrical distribution.  This requires the development of an 

electricity management approach that determines the 

optimal allocation of power to subsystems such that the cost 

of power is minimized.   

In order to achieve this, complex electrical grid usage 

problems require the interaction of individuals at both local 

and global levels.  At the local level, users expect power to 

be available on demand (i.e. with 100% reliability).  At the 

global level, electricity providers are struggling to meet the 

demands of their customers in the most cost efficient 

manner possible.  Thus, it benefits the electricity providers 

to have the minimum amount of power available so as not to 

waste electricity when it is not being used by customers.  

These objectives are inherently competing as maintaining 

electrical service availability for users is costly.  

Additionally, the criticality of some infrastructures (e.g. 

hospitals, police stations) requires greater certainty of power 

availability than the average user.  Combining these factors 

results in a complicated decision making problem. 

This paper develops a methodology for electric system 

decision-making at both a local and global level.  It begins 

by discussing a basic problem formulation for local and 

global decision making to facilitate an interoperable electric 

grid.  The detailed mathematical approach behind this 

methodology is then discussed.  Sample problems 

employing this methodology are demonstrated.  Finally 

some conclusions and recommendations for problem 

extensions are discussed. 

2. PROBLEM FORMULATION 

The goal of this methodology is to develop an approach for 

electric system usage which incorporates the needs of both 

local and global decision makers.  The approach taken to 

achieve this goal is to make decisions at a global level 

which satisfy the constraints of local users.  A global 

decision maker refers to the electricity provider, and it can 

be a national power company or a city-wide power 

company, for example.  A local decision maker, on the other 

hand, is an electricity user, and can include an entire city’s 

consumption or a particular sector of society (such as a 

hospital).  For the remainder of this discussion, electric 

system decisions will take the form of adjusting the power 

output of generators which, by virtue of their physical 

connections, can provide power to various sectors (users) of 

society.  Figure 1 shows an example electric grid in which 

this type of decision making may be necessary for providing 

power to a hospital, police department and fire department.  

The global decision maker (in this case, a city’s utility 

company) must make a decision to provide power via any of 
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the four generators to the three sectors.  While it may seem 

obvious at first to operate only generator 2 (since it provides 

power to all sectors), further analysis may indicate that a 

combination of power to the other three generators may be 

optimal.  This is due to the fact that one of the three sectors 

may be seen as more critical.  This critical sector may 

require a greater certainty of power availability. 

Generator 2

FD

Fire department

Generator 1

Hospital

FDPD

Generator 3

Generator 4

Police

Department

 

Figure 1: Electric Grid Illustration 

In order to make electric system decisions as described 

above, this paper proposes the following problem 

formulation: 

0 s.t .

Cost min

j

i

iij

i

ii

PDdPP

dC
    (1) 

where i is the index of generators in the power system, Ci is 

the cost associated with the i
th

 generator, di is a decision 

variable indicating the power level associated with the i
th

 

generator (defined on [0,1] where 0 indicates the generator 

is off and 1 indicates the generator is operating at 100% 

capacity), j is the index of sectors in the power system, PPij 

is the power provided by the i
th

 generator to the j
th

 sector, 

and PDj is the total power demand of the j
th

 element in the 

system. 

In Eq. (1), the objective is to minimize the global decision 

maker’s (in this case, the electric company’s) overall cost of 

power generation, given constraints on the required power 

imposed by sector users.  This formulation ensures that both 

local and global demands are being met.  While the optimal 

decision of Eq. (1) is not globally optimal (as the global 

decision maker’s optimal cost is $0 and the local decision 

makers would prefer to have all generators delivering power 

to their sector at 100%), it is a solution which is satisficing 

to all the involved decision makers.  That is to say, the 

decision makers regard the solution as “good enough” while 

recognizing that it is not optimal for their own self interests 

[16].  This concept is essential when dealing with complex, 

interoperable systems.  Sacrifices must always be made in 

order to obtain a solution that all involved decision makers 

find acceptable. 

This formulation assumes complete certainty with regards to 

power provided and power demanded.  This is not accurate 

in the context of a real world application.  Therefore, the 

following formulation extends Eq. (1) to include uncertainty 

in PPij and PDj: 

jcritj

i

iij

i

ii

PPDdPPP

dC

0 s.t .

Cost min

   (2) 

where 
jcritP  is the criticality probability associated with the 

j
th

 sector, and all else is as before.  Additionally, the 

constraint which refers to the power demand vs. the 

provided power is now defined probabilistically.  That is, 

the net power must be delivered the j
th

 sector with a 

probability of at least 
jcritP .  Cost is assumed to be 

deterministic for the purposes of this formulation. 

This problem formulation is similar to the reliability-based 

design optimization problem formulation, which is 

discussed in the following section. 

3. RELIABILITY-BASED DESIGN OPTIMIZATION 

Reliability-based design optimization (RBDO) is concerned 

with finding a set of design variables for a given 

engineering system such that a given objective function 

(minimization of cost) is optimized and the design 

requirements (power demand) are satisfied with high 

probability.  As mentioned earlier, the problem formulation 

for RBDO is the same as in Eq. (2). Within the probabilistic 

constraint, 
j

i

iij PDdPP
, which is generally denoted as gi( ) 

and is referred to as a performance function in the RBDO 

literature, is formulated such that gi < 0 indicates failure, gi 

> 0 indicates success, and gi = 0, the boundary between 

failure and success is referred to as the limit state. 

There are two steps in solving Eq. (2). Step 1 is reliability 

analysis, i.e., evaluation of the probability constraint. Step 2 

is optimization. Step 1 is discussed in detail below, focusing 

on a first-order approximation to calculate the probabilistic 

constraint in Eq. (2). Methods under step 2 are reviewed 

later in this section. 

Step1: Analytical calculation of P(gi ≤ 0 ) requires the 

evaluation of the integral of the joint probability density 

function (pdf) of all the random variables over the failure 

domain, as   

0),(

)()0),((
xdg

xi

i

dxxfxdgP   (3) 
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where d is the set of decision variables and x is the set of 

random variables. 

This integral poses computational hurdles since it can be 

difficult to formulate the joint probability density explicitly 

and integration of a multidimensional integral may be 

difficult.  Therefore, numerical integration methods such as 

Monte Carlo simulation or analytical approximations such 

as first-order reliability method (FORM) or second-order 

reliability method (SORM) are commonly used in 

mechanical systems reliability analysis.  Monte Carlo 

simulation requires multiple runs of the deterministic 

system analysis and can be very costly. On the other hand, 

analytical approximations such as FORM and SORM are 

very efficient, and have been shown to provide reasonably 

accurate estimates of the probability integral for numerous 

applications in mechanical and structural systems. Detailed 

descriptions of these methods and computational issues are 

provided in [1, 5, and 7]. 

In FORM, the variables, x, which may each be of a different 

probability distribution, and may be correlated, are first 

translated to equivalent standard normal variables u.  For 

uncorrelated normal variables, this transformation is simply 

ui = 

i

iix .  (Later, this concept is expanded to include 

variables that are non-normal and/or correlated). The limit 

state and the failure and safe regions are shown in Fig. 2, in 

the equivalent uncorrelated standard normal space u.     

 

Figure 2: Illustration of limit state and failure and safe 

regions 

The failure probability is now the integral of the joint 

normal pdf over the failure region. The FORM replaces the 

nonlinear boundary gi = 0 with a linear approximation, at 

the closest point to the origin, and calculates the failure 

probability as  

PF = P( gi (d,x) ≤ 0 ) =  (- i)   (4) 

where PF is the failure probability,  is the cumulative 

distribution function (CDF) of a standard normal variable 

and i is the minimum distance from the origin to the i
th

 

limit state. Thus, the multidimensional integral in Eq. (3) is 

now approximated with a single dimensional integral as in 

Eq. (4), the argument of which (i.e., i) is calculated from a 

minimum distance search. The minimum distance point u* 

on the limit state is also referred to as the most probable 

point (MPP), since linear approximation at this point gives 

the highest estimate of the failure probability as opposed to 

linearization at any other point on the limit state. (A second-

order approximation of the failure boundary is referred to as 

SORM, where the failure probability calculation also 

requires curvatures of the limit state). 

The minimum distance point (or MPP) u* is found as the 

solution to the problem:  

min i      (5) 

s.t. gi (d,x) ≤ 0 

A Newton-based method to solve Eq. (5) was suggested by 

Rackwitz and Fiessler [13]. Other methods such as 

sequential quadratic programming (SQP) have also been 

used in the literature [6] and [19]. 

For non-normal variables, the transformation to uncorrelated 

standard normal space is ui = 
N

i

N

iix
, where 

N

x
 and 

N

x
 are the equivalent normal mean and standard deviation, 

respectively, of the x variables at each iteration during the 

minimum distance search. Rackwitz and Fiessler [13] 

suggested the solution of 
N

x
 and 

N

x
 by matching the 

PDF and CDF of the original variable and the equivalent 

normal variable at the iteration point. Other transformations 

are also available in [2, 11, 12, and 14]. 

If the variables are correlated, then the equivalent standard 

normals are also correlated. In that case, these are 

transformed to an uncorrelated space through an 

orthonormal transformation of the correlation matrix of the 

random variables through eigenvector analysis or a 

Cholesky factorization [7]. The minimum distance search 

and first-order or second-order approximation to the 

probability integral is then carried out in the uncorrelated 

standard normal space. 

The minimum distance search typically involves five to ten 

evaluations of the limit state (and thus system analysis), and 

then the probability is evaluated using a simple analytical 

formula as in Eq. (4). Compared to this, Monte Carlo 

simulation may need thousands of samples if the failure 

probability is small, thus making Monte Carlo methods 

prohibitively expensive for solving large scale stochastic 

optimization problems. 

Since the limit state functions involved in this problem 

formulation are linear in the random variables, and the 

u2 

g(u) = 0 

g(u) < 0 (failure) 

g(u) > 0 (safety) 

u* (minimum 
distance) 

u1 



 Hester 

Grid-Interop Forum 2007 Paper_Id-4 

random variables are assumed to be normal, FORM will be 

accurate.  Second order estimates [3, 8, and 18] of the 

failure probability can also be used when the limit state is 

nonlinear, but due to the simplicity of the limit state 

function in this paper, second order methods are not found 

to be necessary. 

The minimum distance point may also be found using a dual 

formulation of Eq. (5) as  

min ig  (d,x)

s.t. || u || = crit

This dual problem may be referred to as inverse FORM, and 

is used in the optimization (step 2) in this paper.  In this 

formulation, crit is set to value corresponding to Pcrit, as    

crit = )( crit

1 P . 

Step 2: In many implementations of reliability-based 

optimization, the probability constraint in Eq. (2) is usually 

replaced by a quantile equivalent, i.e., by a minimum 

distance constraint, as 

crit s.t .

)(min

i

dCost
     (7) 

where i is the minimum distance computed from Eq. (5). 

Alternatively, the dual formulation has also been used, 

based on Eq. (6), as 

0),( s.t .

)(min

xdg

dCost

i

     (8) 

where gi (d,x) is computed from Eq. (6).  

Since the reliability constraint evaluation itself is an 

iterative procedure, the number of function evaluations 

required for reliability-based optimization is considerably 

larger than deterministic optimization.  A simple nested 

implementation of RBDO (i.e., reliability analysis iterations 

nested within optimization iterations, as in Figure 3) 

tremendously increases the computational effort, and as a 

result, several approaches have been developed to improve 

the computational efficiency, typically measured in terms of 

the number of function evaluations required to reach a 

solution.   

In decoupled methods
 
[6, 15, and 19], the reliability analysis 

iterations and the optimization iterations are executed 

sequentially, instead of in a nested manner (refer to Figure 

4, where OL means optimization loop and RL means 

reliability loop).  This is done by fixing the results of one 

analysis while performing the iterations of the other 

analysis. Single loop methods [9, 10, and 17] perform the 

optimization through an equivalent deterministic 

formulation which replaces the reliability analysis constraint 

with the equivalent KKT condition at the minimum distance 

point on the limit state.  Several versions of decoupled and 

single loops have been developed, based on whether direct 

or inverse FORM is used for the reliability analysis step. 

Note that FORM is the key to all these efficient RBDO 

techniques. Further information on the use of FORM in 

various RBDO formulations can be found in [4]. 

 

Figure 3: Illustration of Nested RBDO Method 

 

Figure 4: Illustration of Decoupled RBDO with Inverse 

FORM 

For the purpose of cost optimization in this paper, a 

decoupled method of RBDO developed in [6] is chosen for 

reducing the number of function evaluations.  In the cost 

optimization, a deterministic optimization is performed 

which determines a starting point for the reliability analysis.  

This deterministic optimization follows the formulation in 

Eq. (1) with the mean values of the design variables serving 

as the values for the random variables.  This optimization 

yields a set of generator settings (d’s).  These setting are 

then passed to the reliability analysis.  The reliability 

analysis then calculates the power demand and power 

provided (x’s or most probable points, known as the MPPs) 

in the original variable space for the individual limit states, 

as outlined in Eq. (8).  The MPP values are then fed back to 

the deterministic optimization and these values replace the 

random variable values (taken as the variable mean values 

in the first iteration).  This process continues until 

convergence is reached on both a configuration and the 

MPP values.  This process is outlined in Figure 5 below. 
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Figure 5: Decoupled Optimization Flowchart 

 
The cost optimization is performed via the branch and 

bound method and the reliability analysis is performed via 

the SQP algorithm.  The next section demonstrates this 

methodology on an example problem. 

4. EXAMPLE PROBLEM 

The example problem presented illustrates the problem 

formulation developed in Sections 2 and 3.  The problem 

corresponds to the illustration shown in Figure 1.  The 

generator data are as follows: 

xi Cost 
PPij 

Hospital Fire Police 

1 25 N(50,2.5) - - 

2 15 N(5,0.25) N(10,0.5) N(5,0.25) 

3 10 - N(5,0.25) N(15,0.75) 

4 20 N(10,0.5) - N(20,1) 

Table 1: Generator Data 

The demand data for the sectors are as follows: 

Sector PDj jcritP
 

Hospital N(50,2.5) 0.9 

Fire N(10,0.5) 0.75 

Police N(10,0.5) 0.75 

Table 2: Demand Data 

It should be noted that all random variables are normally 

distributed with a coefficient of variation (COV = / ) of 

5%.   

The electric grid generator settings were optimized using 

four configurations: optimum (where generator settings 

could take on any value between zero and one) and integer- 

only deterministic variables (evaluated at the mean values of 

the variables), and optimum and integer-only stochastic 

variables.  The generator setting results from the example 

problems are shown below: 

 Stochastic Deterministic 

Generator Optimum 
Integer 
Only Optimum 

Integer 
Only 

1 1.00 1.00 0.92 1.00 

2 0.86 1.00 0.80 1.00 

3 0.37 1.00 0.40 1.00 

4 0.03 0.00 0.00 0.00 

Table 3: Generator Setting Results 

The cost results from the example problems are shown 

below in Table 4. 

 Cost 

Stochastic Optimum 42.11 

Stochastic Integer 50.00 

Deterministic Optimum 39.00 

Deterministic Integer 50.00 

Table 4: Cost Results 

It is obvious that the integer-only solutions are more 

expensive than the equivalent optimum solutions.  This is 

due to the fact that integer solutions represent power 

configurations that are providing the sectors with excess 

power.  Additionally, it makes sense that the optimum value 

for the stochastic scenario costs more money (i.e. requires 

more power) than its equivalent deterministic scenario.  This 

is because excess power must be provided to ensure that the 

required demand is met with the specified Pcrit.  The 

stochastic and deterministic integer solutions result in the 

same settings because they both provide a level of excess 

power that is adequate in both the deterministic and 

stochastic scenarios. 

5. CONCLUSIONS 

Utilizing a first order reliability method, this paper 

developed an efficient methodology for making power 

system decisions at the global level that incorporates the 

needs of local power system users.  This methodology 

includes consideration of uncertainty in power demand and 

provided power.   

Several extensions should be explored in future power 

system decision making methodologies.  They include: 

 Nonlinear power functions.  Delivered power and 

demand require more complicated modeling than is 

present in this methodology.  While this methodology is 

an appropriate starting point, realistic models should be 

incorporated using RBDO.  

 Non-linear and non-deterministic costs.  Cost is 

assumed to be both linear (increasing as di increases) 
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and deterministic.  The effects of both non-linear and 

stochastic costs should be investigated. 

 More complicated sector interactions.  Sectors in this 

paper do not have a direct influence on one another as 

they would in realistic scenarios (i.e. as one sector is 

powered, the other has decreased power delivered).  

These interactions should be investigated further and a 

more complicated interaction model should be 

developed. 
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