

Smart Grid Communications:

QoS Stovepipes or QoS Interoperability?

David E. Bakken, Washington State University, Pullman WA USA bakken@eecs.wsu.edu

Richard E. Schantz, BBN Technologies, Cambridge MA USA schantz@bbn.com

Richard D. Tucker, Tucker Engineering Associates, Locust NC USA, richardaet@aol.com

Keywords: interoperability, middleware, quality of service,
QoS stovepipes, critical infrastructures.

Abstract Interoperability is a key requirement for data
communications in the ―smart grid‖. It has been articulated
at great length by the GridWise Architecture Council
(GWAC). However, the interoperability issues identified
here to date include only interoperability of the data
exchange. In this paper, we first argue that middleware is a
key enabling technology for helping meet interoperability
requirements and avoid stovepipe systems in the smart grid.
We then argue that the smart grid‘s data communications
must support interoperability of Quality of Service (QoS)
and security mechanisms across an entire power grid; this
will necessarily involve traversing multiple organizations‘
IT infrastructures that may have different network-level
mechanisms for providing QoS and security. We introduce
the concept of QoS stovepipes to help illustrate how such
QoS and security interoperability may occur and its
consequences. We then argue that the application
programmer interface for such QoS and security
requirements must be kept as high-level as possible to avoid
QoS stovepipes. Finally, we argue that middleware-level
mechanisms are a much better way to provide this end-to-
end QoS and security, compared to the usual technique in
the power grid of using (and getting locked into) network-
level mechanisms (which the middleware is built on top of).

1. INTRODUCTION

Interoperability both within and across utilities is a major
concern as the communications systems for the "smart grid"
are being envisioned and planned [1, 2, 3, 4, 5, 6]. Two
major categories of interoperability are network
interoperability and syntactic interoperability [3]. Network
interoperability involves "exchange of messages between
systems across a variety of networks". Syntactic
interoperability involves ―understanding of data structure in
messages exchanged between systems‖, typically via
network messages.

There are a number of cross-cutting interoperability issues
that span multiple interoperability categories [3]. Two key

ones which applications require are ―Security & Privacy”
and ―Quality of Service”.

Additionally, we believe that any implementations
supporting interoperability must also support the following
principles articulated in [2]:

Principle I09: An interoperability framework must be
practical and achievable:

 Meets performance requirements
 Is reliable
 Is scalable
 Has sufficient breadth to meet the range of

business needs

Principle I10: An interoperability strategy must
accommodate the coexistence of and evolvement
through several generations of IT standards and
technologies that will reside at any point in time on the
Grid.

Middleware (defined further below) is a software
technology for organizing and programming distributed
applications, that is, those applications with parts of a
program or service separated by a network [7]. It has been
considered "best practices" in other industries for many
years (see, for example, [8, 9]) but has barely been deployed
in electric power grids to date, at the least for power
applications requiring wide-area situational awareness or to

Figure 1: Context of QoS Interoperability [GWAC08]

otherwise augment SCADA.

In this paper, we articulate some issues that must be
addressed in support of cross-cutting security and privacy,
as well as QoS aspects, in the GWAC network and syntactic
interoperability categories. These are highlighted in Figure
1.

The major points of this paper are as follows:

 In support of Principle I09, which essentially
states that any solutions need to be effective from a
variety of operational perspectives, it is essential
that syntactic interoperability is incorporated across
the board to its individual elements. We believe
that having a comprehensive middleware
architectural framework to deliver these services is
the most effective way to ensure this in a
comprehensive way, instead of a large collection of
individual but narrow approaches, mechanisms,
and evaluations.

 In order to support interoperability across
organizations and in support of the "future
proofing" articulated in Principle I10, it is
essential that APIs for Quality of Service
(including security) should be expressed at a
middleware layer, which maps down onto the
lower-level mechanisms for providing a given
property, in order to extend life cycle management
across the evolution of these mechanisms.

 In order to support multiple non-functional/QoS
properties (delay, rate, confidentiality,
criticality/availability, ...), it is essential that APIs
be expressed in middleware so that they can be
integrated and co-managed.

 We extend the definition of a Stovepipe system to
include non-functional properties such as QoS and
security. We call this a QoS Stovepipe System,
something that the ―smart grid‖ must avoid.

Finally, we note that we use the term ‗QoS‘ in the title and
the summary points above to be inclusive of a wide range of
non-functional/behavioral requirements for smart grid
communications, i.e., including cyber-security issues, rate,
synchronization, etc [10]. This is the typical view of many
(though not all) applied computer scientists, especially those
working in the middleware (vs. the network
communication) spaces (see for example [11]). We note,
however, that GWAC and others often take a narrower view
on what QoS is, so throughout the paper we refer to these
properties either as ―non-functional properties‖ or ―QoS and
security/privacy‖ or something similar.

The remainder of this paper is organized as follows. Section
2 discusses functional interoperability and its opposite

effect, stovepiped systems. Section 3 analyzes how
middleware can enhance functional interoperability, i.e.
traditional APIs and contracts. Section 4 discusses non-
functional (QoS and security/privacy) issues and
interoperability. Section 5 analyzes how middleware can
enhance QoS interoperability to avoid creating systems that
are stovepipes in terms of end-to-end QoS and
security/privacy. Section 6 concludes the paper.

2. FUNCTIONAL INTEROPERABILITY AND

STOVEPIPES

We now provide a definition of a stovepipe system:

Stovepipe System: a legacy system that is an
assemblage of inter-related elements that are so tightly
bound together that the individual elements cannot be
differentiated, upgraded or refactored. The stovepipe
system must be maintained until it can be entirely
replaced by a new system [12, 13].

Stovepipe systems are commonplace in many long-lived
systems, particularly the military, and unfortunately many
examples abound in today's electric power grid. However,
they are very expensive to maintain, and the opportunity
cost of their inability to be upgraded or refactored is
staggering. It is thus essential that as we move forward the
smart grid minimize the likelihood of creating stovepipe
systems.

Interoperability is of course crucial across multiple
organizations, vendors, standards, locations, and time scales.
A smart grid clearly requires this [1, 3]. Fortunately,
technologies and technical approaches developed in
computer networking distributed computing, and software
engineering in the last two decades enable the smart grid to
be built in ways that can avoid both stovepipe systems and
vendor lock-in.

Network interoperability (Category 2 in [3]) includes
transferring data across different networks, inter-domain
naming issues, etc. For example, IP can operate above local
area networks (LANs) running different technologies such
as Ethernet and token ring. It also encompasses OSI Layers
3 and above1: network (3), transport (4), session (5), and
even sometimes aspects that were formerly thought of as

1 We note that [3] does not list OSI Layer 6: Presentation.
We believe that this evolving document needs to incorporate
considerations in this dimension as well. For example, this
is where interoperability between different CPU types (big
endian vs. little endian) is handled. We do believe,
however, that this would be better handled in a Syntactic
Interoperability layer (Category 3 of [3]), ideally via
common middleware.

part of the application layer (7)2. Another example of
Network interoperability is the 2008 North American
Distribution Metering Standard ANSI C12.22. It is
designed to operate with different legacy Electric Utility
AMI technologies, including IP, by providing services
(including name service) above the transport layer allowing
it to ride on any and all networks. [14] ANSI C12.22
represents the OSI session layer (5, 6) and interfaces with
ANSI C12.19 representing OSI application layer (7).

Before we can offer further analysis, we must distinguish
between two kinds of interoperability: functional
interoperability and non-functional interoperability.

Functional interoperability involves the traditional
interoperability of the application or "business logic".
Functional interoperability of course requires some kind of
agreement on the interface: an API or contract [3 Sec 2.1].
In the next section we describe how middleware can greatly
aid in functional interoperability.

Non-functional interoperability involves interoperability
across behavioral issues such as delay and security. In
Section 4 we describe this further, then in Section 5 we
show how QoS-enabled middleware can aid in providing
end-to-end QoS that spans multiple organizations,
underlying lower-level QoS mechanisms, etc.

3. MIDDLEWARE AND FUNCTIONAL

INTEROPERABILITY

3.1. Definition and Benefits of Middleware

We now provide a definition of middleware [7, 15]:

Middleware: a layer or layers of software and
services above the operating system but below the
application program providing a common
programming abstraction and system model across
a distributed system.

An example of middleware (of a client-server variety) is
given in Figure 2. The middleware API offers a given
programming abstraction (distributed objects, distributed
tuples, etc) that the middleware implements on top of the
given operating system's APIs. This ability for the
programmer's API to be shielded from that of a lower-level
operating system mechanism (or, as we will see in Section
6, being separated from lower-level non-functional APIs for
such QoS/security properties as delay, throughput, and

2 We note that, in our experience, layers in a distributed
computing system often don‘t look anything like or behave
like classically described OSI layers 5 and above; we list
them here because they are explicitly used as guidance in
[3].

confidentiality) is a key advantage of a middleware
approach.

Middleware exists in part to help manage the complexity
and heterogeneity inherent in distributed systems. Indeed,
important aspects of it were developed in large part under
the umbrella of the US military, due to its extensive
operational needs, e.g. the Cronus project [16]. Middleware
provides higher-level and network-centric building blocks
(abstractions such as distributed objects, distributed tuples,
remotely updated variables, etc) than an operating system
provides, and more suitable to distributed computing. Such
higher-level building blocks can help make code much more
portable, with fewer errors (no need to handle low-level
communications issues), and are much easier to change
later. They also make programmers more productive
because they are much closer to the application's layer of
abstraction (servers, publishers, variables, hierarchically-
named objects, etc) than the network layer (buffers, DNS
names, etc).

Middleware thus also helps insulate the developer from
different kinds of heterogeneities that are inherent in a
distributed computing system (and provides interoperability
across them):

 Network technology (OSI Layers 2 and 3)

 CPU architecture (big/little endian, word size, ...);
including OSI Layer 6 (Presentation)

 Operating system (or family thereof; exception:
Microsoft Windows -- de facto albeit not de jure).

 Programming language

 Vendor implementation (some middleware
standards, notably from the Object Management
Group, have been supported by multiple vendors
for many years).

Figure 2: Middleware in Context

3.2. Standardization of Middleware

Middleware is typically standardized through a combination
of at least three levels, to achieve different forms of
interoperability:

 API/contract, typically through a language-
independent interface definition language (IDL).
An IDL compiler then translates the IDL into
different supported programming language
interfaces, which the programmers program to in
the programming language for their particular
application.

 Wire protocol: how a method name, server
identification, parameter list, etc are marshaled into
a network packet

 Message protocol: what kinds of message are sent
at a given middleware layer. For example, the
CORBA standard specifies 7 different kinds of
message; example: a CORBA::REQUEST message
goes from the client to the server, which responds
back with a CORBA::REPLY message.

Middleware is standardized at the interface levels above, but
most often not at the implementation level underlying that
interface (for most of the implementation; however, key
aspects of interoperability e.g. message and wire protocols,
also accompany the standardization to achieve more specific
interoperability co-objectives.) This allows different
vendors to optimize their implementations in different ways
and in general to be able to "build a better mousetrap". This
in turn makes it feasible for long-running software systems
to be able to switch vendors mid-life if needed (e.g., by a
vendor bankruptcy or availability of a better
implementation). This switch is not without cost, of course,
but is a (sometimes small) fraction of the cost of re-
implementing the system from scratch.

3.3. Multi-Layered Middleware

Network researchers have of course developed multiple
layers of network protocols, where each layer builds on the
one below and offers a higher-level of abstraction or
service. Similarly, middleware researchers have developed
multiple layers of middleware that build on the layer below
it [17, 18, 19]. As the layers move higher, not only are the
abstractions and services offered to the programmer at a
higher level, but they may also become more domain-
specific (but still reusable across applications).

3.4. Middleware in Other Industries

The US military has long had complex distributed software
spread out over wide geographic areas in hostile and
changing IT conditions. It was thus a leader in pushing the

development of middleware; for years, middleware has been
required by a number of agencies for their distributed
application programs, including the following:

 US DOD DISA DISR (current DISR baseline
version is 09-2; requires DoD PKI Cert to access)

 US Navy NESI (see NESI-X Part 5 Developer
Guidance Mid Tier)

 US Navy Open Architecture Computing
Environment (OACE)

 US Navy FORCEnet Reference Architecture
(FORCEnet Architecture and Standards: Volume
II, Technical View)

 US Navy PEO IWS Objective Architecture
Software Design Document (Draft)

For more examples of the widespread use of middleware in
other industries such as aviation, transportation, and
aerospace, see [8].

3.5. Middleware and the Smart Grid

Note that middleware typically overlays and enhances OSI
Layers above the transport (4) layer4. The alternative to
handling these layers in middleware is to hand-code these
layers in the application program. However, this is very
time-consuming and error prone; the best practices are very
hard to re-create [9].

We thus believe that in the layers described in [3], the
Network Interoperability layer should address OSI Layers 4
(transport) and below, not including "Application Protocols"
as [3 suggests], and arguably not Layer 5 (session), which
middleware typically handles. Additionally, we believe that
the Syntactic Interoperability layer should encompass issues
associated with OSI Layers 5 and 6. ANSI C12.19 was a
first effort in Distribution Metering toward solving some of
the issues that Middleware has solved in other industries,
such as CPU architecture (big/little endian, word size, data
types, syntax, syntax organization, device description via
device class…); including OSI Layer 6 (Presentation).
Middleware typically handles some session-level issues, but
may utilize aspects of transport-layer session management
when it is implemented over a transport such as TCP that
already provides a form of session management.

4 We note that neither of the two key documents for smart
grid interoperability [3, 20] even mention middleware by
name, and the few examples [3] happens to give are very
primitive and are mingled in with network protocols without
distinguishing between the two.

https://disronline.disa.mil/a/public/DISR_reports.jsp
http://nesipublic.spawar.navy.mil/
https://acc.dau.mil/CommunityBrowser.aspx?id=22100&lang=en-US
https://acc.dau.mil/CommunityBrowser.aspx?id=22100&lang=en-US
http://forcenet.navy.mil/

In this vein, the Distribution Metering Standard, ANSI
C12.22, is also aligned with the concept of middleware by
providing services such as ―naming‖ and ―application
security‖ if needed (Not provided by legacy lower layer
communications technologies). It is also, constructed to
operate above UDP and TCP transport [14] UDP, which is
often used as a critical element for both more predictable
low latency and natural fit within multicast frameworks, has
no real session layer, so when middleware is implemented
on top of it the middleware typically does all the session
management (for example, when a client is "connected" to a
server object in CORBA or a subscriber is "connected" to a
publisher).

Further, we note that the GWAC layering perceptively
includes a semantic understanding (interoperability) layer.
There is as yet only limited experience with the appropriate
ways to separate and integrate these newer views of
interoperability, but it seems clear that middleware services
can and should serve as a simplifying organizational base
apart from the specific technology and mechanisms used to
implement it, thus pushing our notion of ―interoperable
systems‖ to an even higher level.

Finally, we note that middleware is not mutually exclusive
with existing utility standards such as C37.118, IEC 61850,
ANSI C12.19/C12.22 and OPC UA. Indeed, middleware
can be used to integrate these and other standards into a
grid-wide inter-utility data delivery system within a
standardized and hierarchical naming scheme. Additionally,
some middleware is developed specifically for the wide area
[21, 11]. Given that the above-mentioned utility standards
feature protocols that have varied abilities for the wide area
with QoS and multicast and security, such middleware can
encapsulate and integrate with messages from current utility
standards listed above, which may already have widespread
deployment.

4. NON-FUNCTIONAL INTEROPERABILITY AND

QOS STOVEPIPES

As noted above, functional behavior deals with the business
logic embedded in programs. Its APIs are specified in an
IDL or some similar kind of contract. While functional
behavior deals with the “what” of the program or service,
non-functional behavior deals with the “how”: how fast,
how robust/available, how secure, how complete.
Implementing this often also requires sophisticated resource
management strategies, and encompasses specific issues
that service providers are routinely concerned with,
including such things as controlled sharing and utilization of
resources.

4.1. Non-functional properties

Non-functional properties that are required for the power
grid include the following [22, 23, 24, 25, 26, 27]:

 End-to-end latency (as low as a few milliseconds
for current expected applications)

 Rate (from once a minute to 250 Hz)

 Widely varying requirements for availability of
Data: {Ultra-high, Very High, Medium, Low}

 Confidentiality

 Integrity

A crucial point regarding non-functional properties is this—
you usually can’t have them all at once:

1. Different properties inherently must be traded off
against others.

2. Different mechanisms for a given property are
appropriate for only some of the operating
conditions an application may encounter
(especially a long-lived one).

3. Different mechanisms for the same non-functional
property can have different tradeoffs of lower-level
resources (CPU, bandwidth, storage)

4. Mechanisms most often can‘t be combined in
arbitrary ways

Further, even if you somehow could have them all at once, it
would likely be prohibitively expensive. Given these
realities, and the fact application programmers rarely can be
expert in dealing with the above issues, middleware with
non-functional properties supported in a comprehensive and
coherent way is a way to package up the handling of these
issues and allow reuse across application families,
organizations, and even industries. Indeed, for this reason,
the Quality of Service for Objects project (QuO)
middleware framework even has architecturally created a
first-class role for a new kind of programmer: a QoS
Engineer [11, 28, 29]

4.2. Implementing Non-Functional Properties

Resource allocation is a big part of resource management
and is essential for providing non-functional properties. A
given lower-level mechanism enables one or more non-
functional properties that may be optimized (or, at
minimum, appropriate) for some operating conditions and
inappropriate or even considered ―not working‖ under other
conditions. At runtime, a given mechanism may utilize
different levels of underlying resources (CPU, bandwidth,
memory/storage). Different mechanisms providing the
same property can provide different levels of non-functional

service for given operating conditions; they also typically
offer different tradeoffs between the level of non-functional
properties provided and resources consumed.

Examples of typical ways that non-functional properties can
be supported include the following:

 Latency mechanisms: a chain of network-level
―reservations‖ for performance (see below for a
more detailed view).

 Confidentiality mechanisms: encryption

 Integrity mechanisms: higher-level algorithms built
on top of encryption (e.g., digital signatures).

 Availability mechanisms: replication (spatial,
temporal, value) and end-to-end latency
mechanisms per above.

4.3. Abstraction Level for Non-Functional APIs

Best practices dictate that the abstraction level for non-
functional properties offered to the programmer be
established as high as possible, rather than encouraging
developers to bind directly into lower-level mechanisms, for
a number of reasons:

 It is less error-prone.

 Very few application programmers are expert in
low-level, non-functional property mechanisms.

 Different lower-level mechanisms are available in
different configurations in different deployments.

 The APIs of the lower-level mechanisms will
change over time and perhaps with situation.

 New lower-level mechanisms providing the same
property or properties will become available over
the lifetime of an application (which often can span
many decades). Such new mechanisms will often
be better than existing ones in one or more ways,
including offering a higher level of a non-
functional property or being useable across a wider
range of operating conditions

We now give an example of how higher-level properties can
be mapped down to lower-level mechanisms [30]:

• Application-Level-1: freshness =
max_period + max_latency

• Application-Level-2: rate and latency to deliver a
given update over given path of links (each with
given link-level latencies), for a given update
message size. Note that the max_period above is
inversely related to rate here.

• Network-Level-1: bits/second over a given link.
This of course depends on the size of the updated
variable (which may vary considerably) and the
rate (which in some cases may be changed at
runtime).

• Network-Level-2: mechanism-specific parameters
of a given network-level QoS mechanism

In Section 5 below, we show the difficulties that application
programmers may have in directly programming to these
network-level QoS parameters without the added support
from a middleware infrastructure layer.

4.4. QoS Stovepipe Systems

Recall from Section 2 the definition of a stovepipe system:

Stovepipe System: a legacy system that is an
assemblage of inter-related elements that are so tightly
bound together that the individual elements cannot be
differentiated, upgraded or refactored. The stovepipe
system must be maintained until it can be entirely
replaced by a new system [12, 13]

From this we propose the following new definition:

QoS Stovepipe System (QSS): a system of systems
whose subsystems are locked into low-level
mechanisms for QoS and security such that

a) it cannot be deployed in many reasonable
configurations, or

b) some programs cannot be combined because they
use different lower-level QoS mechanisms for the
same property (e.g., latency) that cannot be
composed, or

c) It cannot be upgraded to ―ride the technology‖
curve as better low-level QoS and security
mechanisms become available.

It is essential that any ―smart grid‖ avoids enabling or
perhaps even allowing QSS, and in the next section we
discuss how middleware can help.

5. MIDDLEWARE AND QOS INTEROPERABILITY

Common network-level QoS mechanisms include ATM,
INTSERV/RSVP, IPv6 Flow Labels, DIFFSERV, and
MPLS. These different mechanisms all have service level
management capabilities, very roughly parameterized by
delay, loss, throughput, and security. However, they have
very different semantics. Most offer very coarse notions of
these properties, although IPv6 Flow Labels [31] offer
somewhat finer granularity (though likely not nearly what is
needed for real-time streaming of mission critical data such
as represented by synchrophasor based applications).

But these different mechanisms that seem superficially
similar vary quite a bit in terms of the sustainable service
they provide, the kind of control mechanism (and
corresponding API), and the time that this control
mechanism is invoked by the program. Figure 3
summarizes how ATM, INTSERV/RSVP, IPv6 Flow
Labels, DIFFSERV, and MPLS all vary widely in such
ways. It is worth noting regarding these different
mechanisms:

 Composing them (e.g., across ISPs or
organizations) is not a simple task

 None are likely to become the single standard or
protocol and be available everywhere, so
composition or augmentation may be necessary.

These together argue that it is best to not burden application
programmers with individually directly programming to
these mechanisms for supporting the associated non-
functional properties. Rather, their use can be incorporated
as best practices into middleware, with common mappings
to one or more underlying mechanisms of choice. This is
essential if we are to avoid building QSSs for the ―smart
grid‖. In our long experience in building distributed
applications, it is very difficult to avoid QoS Stovepipe
Systems without an interceding layer of QoS-enabled
middleware. Such QoS-enabled middleware can be provided
by experts through common infrastructure not only for
functional interoperability but also for non-functional
properties; such middleware has been under research study
and transition evaluation since the mid- 1990s and later has

been offered as standardized commercial products (e.g., by
the OMG) [32]. This allows middleware vendors to
establish which mechanisms providing different non-
functional properties can be used and combined in which
ways under which operating conditions, and package this up
for programmers to use at a higher level. For research
examples of such middleware, see [33] [34] [35]. Further
commentary on this issue can be found at [36].

Finally, regarding middleware, in our opinion you cannot
today buy everything that is needed for complex high
performance, high precision and highly predictable mission
critical data delivery systems commercial off the shelf
(COTS), especially for wide area deployments. Some
existing COTS middleware can be very appropriate for
significant parts of such systems. However, these
implementations are not optimized for the very low
latencies and the very high availabilities that wide-area
system integrity protection schemes [37] and closed-loop
control for the grid will require. We note that besides QoS-
enabled middleware, of course, there still needs to be a
coherent architecture that utilizes it [38], and a middleware
based perspective can be an important element of that as
well.

Acknowledgements

We received quite useful and detailed feedback on this
paper from John Zinky, Carl Hauser, and Adam Bakken.
We also thank Jeff Dagle, Stan Schneider, Anjan Bose, Phil
Overholt, Hank Kenchington, Neeraj Suri, and Alison

Protocol Guarantees Control Mechanism Control Time

ATM Strong Reserve explicit circuit across
network for entire connection

Runtime: connection Setup; or
SLA purchase time

INTSERV/RSVP Soft (will inform program
if violated)

Out-of-band channel following data
path, setting up time slots or buffers
etc.

Runtime: out of band, can be
repeated

IPv6 Flow Label Hints (not even soft), will
likely happen in the
aggregate over a long time

Byte in each IP packet tagged with a
class; can be interpreted differently
in different implementations

SLA purchase time

DIFFSERV Hints (not even soft), will
likely happen in the
aggregate over a long time

Byte in each IP packet tagged with a
class; can be interpreted differently
in different implementations

SLA purchase time

MPLS

(specialized form

of DIFFSERV)

Aggregate economic
guarantees over {user,
location, protocol}

Internal to ISP: in ingress ISP adds
header tag and used internally to
queue by class and user, not packet

Traffic shaping time: out of
band, periodically, aggregated
across multiple customers.

Figure 3: Differences in Network-Level Mechanisms for {delay, loss, bandwidth, security}

Silverstein for their inputs to the research that lead to this
paper.

This research has been supported in part by grants CNS 05-
24695 (CT-CS: Trustworthy Cyber Infrastructure for the
Power Grid(TCIP)) and its new extension, TCIPG. All
above have been funded by NSF, DHS, and DoE, and for
that we are grateful.

References

[1] GridWise Architecture Council, Interoperability Path
Foreward Whitepaper, November 2005.

[2] GridWise Architecture Council, Interoperability
Constitution Whitepaper (v1.1), December 2006.

[3] GridWise Architecture Council, GridWise
Interoperability Context-Setting Framework (v1.1) , March
2008.

[4] C. Hauser, D. Bakken, and A. Bose, A Failure to
Communicate: Next Generation Communication
Requirements, Technologies, and Architecture for the
Electric Power Grid, IEEE Power & Energy Magazine,
3(2), March 2005, 47-55.

[5] K. Tomsovic, D. Bakken, M. Venkatasubramanian, and
A. Bose, Designing the Next Generation of Real-Time
Control, Communication and Computations for Large
Power Systems. In Proceedings of the IEEE (Special Issue
on Energy Infrastructure Systems), page 93(5), May 2005.

[6] North American Synchrophasor Initiative, Quanta
Statement of Work, May 2008.

[7] D. Bakken, Middleware, a survey article prepared for
Encyclopedia of Distributed Computing, Kluwer Academic
Publishers, Partha Dasgupta and Joseph Urban, editors.

[8] S. Schneider, Middleware for Mission-Critical Systems,
presentation at NASPI Working Group Meeting, October 7,
2009, Chattanooga, TN.

[9] R. Soley. Open Standards for Middleware: and Up the
Stack Too, presentation at NASPI Working Group Meeting,
October 8, 2009, Chattanooga, TN.

[10] R. Schantz. Quality of Service, a survey article
prepared for Encyclopedia of Distributed Computing,
Kluwer Academic Publishers, P. Dasgupta and J. Urban,
editors.

[11] Zinky JA, Bakken DE, Schantz R. Architectural
Support for Quality of Service for CORBA Objects. Theory
and Practice of Object Systems, April 1997.

[12] Wikipedia, Stovepipe system.

[13] Improving Project Management in the Department of
Energy, National Academy Press, ISBN 0-309-06626-3,
1999.

[14] IETF RFC C1222 Transport Over IP – 2009.

[15] Geihs, K., "Middleware challenges ahead," Computer,
vol.34, no.6, pp.24-31, Jun 2001.

[16] Richard E. Schantz, Robert H. Thomas, Girome Bono.
―The Architecture of the Cronus Distributed Operating
System‖. In Proceedings of the 6th International
Conference on Distributed Computing Systems (ICDCS86),
IEEE Computer Society Press, Cambridge, Massachusetts,
USA, May 19-13, 1986, 250-259.

[17] Richard E. Schantz, Joseph Loyall, Craig Rodrigues,
Douglas C. Schmidt, Yamuna Krishnamurthy, and Irfan
Pyarali. Flexible and Adaptive QoS Control for Distributed
Real-time and Embedded Middleware. The
ACM/IFIP/USENIX International Middleware Conference,
June 2003, Rio de Janeiro, Brazil.

[18] Richard E. Schantz and Douglas C. Schmidt. Research
Advances in Middleware for Distributed Systems: State of
the Art. IFIP World Computer Congress, August 2002,
Montreal, Canada.

[19] Richard Schantz and Doug Schmidt. Middleware for
Distributed Systems - Evolving the Common Structure for
Network-centric Applications. Chapter in the Encyclopedia
of Software Engineering. John Wiley & Sons. December
2001, pp. 801-813.

[20] Framework and Roadmap for Smart Grid
Interoperability Standards Release 1.0 (Draft), NIST,
September 2009.

[21] D. Bakken, C. Hauser, H. Gjermundrød, and A. Bose.
Towards More Flexible and Robust Data Delivery for
Monitoring and Control of the Electric Power Grid,
Technical Report EECS-GS-009, Washington State
University, May 2007.

[22] IEEE 1646 Standard Communication Delivery Time
Performance Requirements for Electric Power Substation
Automation, IEEE, 2004.

http://www.gridwiseac.org/pdfs/interoperability_path_whitepaper_v1_0.pdf
http://www.gridwiseac.org/pdfs/interoperability_path_whitepaper_v1_0.pdf
http://www.gridwiseac.org/pdfs/constitution_whitepaper_v1_1.pdf
http://www.gridwiseac.org/pdfs/constitution_whitepaper_v1_1.pdf
http://www.gridwiseac.org/pdfs/interopframework_v1_1.pdf
http://www.gridwiseac.org/pdfs/interopframework_v1_1.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=30485&arnumber=1405870&count=29&index=11
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=30485&arnumber=1405870&count=29&index=11
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=30485&arnumber=1405870&count=29&index=11
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=30485&arnumber=1405870&count=29&index=11
http://gridstat.net/publications/IEEE-Proceedings-Submitted.pdf
http://gridstat.net/publications/IEEE-Proceedings-Submitted.pdf
http://gridstat.net/publications/IEEE-Proceedings-Submitted.pdf
http://www.naspi.org/resources/dnmtt/naspinet/quanta_sow.pdf
http://www.naspi.org/resources/dnmtt/naspinet/quanta_sow.pdf
http://eecs.wsu.edu/~bakken/middleware.pdf
http://www.naspi.org/meetings/workgroup/2009_october/presentations/schneider_rti_middleware_mission_critical_20091007.pdf
http://www.naspi.org/meetings/workgroup/2009_october/presentations/soley_schweitzer_open_internal_standards_20091008.pdf
http://www.naspi.org/meetings/workgroup/2009_october/presentations/soley_schweitzer_open_internal_standards_20091008.pdf
http://www.dist-systems.bbn.com/papers/1999/QoSArticle/
http://www.dist-systems.bbn.com/papers/1997/TAPOS/
http://www.dist-systems.bbn.com/papers/1997/TAPOS/
http://en.wikipedia.org/wiki/Stovepipe_system
http://books.nap.edu/catalog.php?record_id=9627
http://books.nap.edu/catalog.php?record_id=9627
http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=928618&isnumber=20074&tag=1
http://quo.bbn.com/papers/2003/Middleware2003/index.shtml
http://quo.bbn.com/papers/2003/Middleware2003/index.shtml
http://www.dist-systems.bbn.com/papers/2003/IFIP/index.shtml
http://www.dist-systems.bbn.com/papers/2003/IFIP/index.shtml
http://www.dist-systems.bbn.com/papers/2003/IFIP/index.shtml
http://www.dist-systems.bbn.com/papers/2001/EvolutionOfMiddleware/
http://www.dist-systems.bbn.com/papers/2001/EvolutionOfMiddleware/
http://www.dist-systems.bbn.com/papers/2001/EvolutionOfMiddleware/
http://www.nist.gov/public_affairs/releases/smartgrid_interoperability.pdf
http://www.nist.gov/public_affairs/releases/smartgrid_interoperability.pdf
http://gridstat.net/publications/TR-GS-009.pdf
http://gridstat.net/publications/TR-GS-009.pdf

[23] David Bakken, Quality of Service Design
Considerations for NASPInet, presentation at NASPI
Working Group Meeting, February 4, 2009, Scottsdale, AZ.

[24] IntelliGrid Project, ―The Integrated Energy and
Communication Systems Architecture, Vol. IV: Technical
Analysis‖.2004, Available via
http://www.epri.com/IntelliGrid/.

[25] US Dept. of Energy, Roadmap to Secure Control
Systems in the Energy Sector, January 2006.

[26] K. Hopkinson, G. Roberts, X. Wang, and J. Thorp,
Quality of Service Considerations in Utility Communication
Networks, IEEE Transactions on Power Delivery, 24(3),
July 2009.

[27] Dave Bakken, Carl Hauser, and Harald Gjermundrød,
Appropriateness of internet protocols and commercial
publish-subsribe middleware for wide-area data delivery in
the bulk power system. Technical Report EECS-GS-014,
Washington State University, November, 2009.

[28] Schantz RE, Loyall JP, Atighetchi M, Pal PP.
Packaging Quality of Service Control Behaviors for Reuse.
Proceedings of ISORC 2002, The 5th IEEE International
Symposium on Object-Oriented Real-time distributed
Computing, April 29 - May 1, 2002, Washington, DC.

[29] Pal PP, Loyall JP, Schantz RE, Zinky JA, Shapiro R,
Megquier J. Using QDL to Specify QoS Aware Distributed
(QuO) Application Configuration. Proceedings of ISORC
2000, In Proceedings of the 3rd IEEE International
Symposium on Object-Oriented Real-time distributed
Computing, March 15 - 17, 2000, Newport Beach, CA.

[30] David Bakken. Quality of Service Design
Considerations for NASPInet. Presentation to the North
American Synchrophasor Initiative (NASPI) Work Group
meeting, Scottsdale, AZ February 4, 2009.

[31] Sun Microsystems, IPv6 Quality of Service
Capabilities, 2009.

[32] Krishnamurthy Y, Kachroo V, Karr DA, Rodrigues C,
Loyall JP, Schantz RE, Schmidt DC. Integration of QoS-
Enabled Distributed Object Computing Middleware for
Developing Next-Generation Distributed Applications. In
Proceedings of the ACM SIGPLAN Workshop on
Optimization of Middleware and Distributed Systems (OM
2001), June 18, 2001, Snowbird, Utah.

[33] Christopher Gill, Jeanna Gossett, David Corman,
Joseph Loyall, Richard Schantz, Michael Atighetchi, and
Douglas Schmidt. Integrated Adaptive QoS Management in
Middleware: A Case Study. 10th IEEE Real-Time and

Embedded Technology and Applications Symposium
(RTAS 2004), Toronto, Canada, May 25-28, 2004.

[34] Loyall JP, Bakken DE, Schantz RE, Zinky JA, Karr
DA, Vanegas R, Anderson KR. QoS Aspect Languages and
Their Runtime Integration. Lecture Notes in Computer
Science, Vol. 1511, Springer-Verlag. Proceedings of the
Fourth Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers (LCR98), 28-30 May
1998, Pittsburgh, Pennsylvania.

[35] Richard Schantz, Evolution of Middleware Services
toward Realtime and Embedded (Cyber-Physical)
Environments: The BBN Experience, presentation at NASPI
Working Group Meeting, February 5, 2009, Scottsdale, AZ.

[36] L. Beard, D. Bakken, F. Galvan, and P. Overholt, Data
Delivery & Interoperability for Smart Grids, presentation at
Grid-Interop 2008, November 11-13, 2008, Atlanta, GA.

[37] Horowitz, S. Novosel, D. Madani, V. Adamiak,
M. ―System-Wide Protection‖, IEEE Power & Energy
Magazine, 6(5), September 2008, 34-42.

[38] R. Tucker, End to End communications for Smart Grid,
Technical Report, North American End Device Registration
Authority (NAEDRA), April 16, 2009.

Biography

Dr. David E. Bakken is an Associate Professor of
Computer Science at Washington State University. His
expertise includes designing, implementing, and deploying
middleware frameworks supporting multiple QoS/security
properties for wide-area networks. He has been working
closely with WSU power researchers for 10 years on
rethinking the grid's limited communications and
developing the GridStat middleware framework. GridStat
has had a large impact on the shape of the emerging
NASPInet framework, which is the leading effort to develop
better wide-area data delivery for the bulk power system.
Prior to joining WSU, he was a scientist at BBN
Technologies where he was an original co-inventor of the
Quality Objects (QuO) framework. He has consulted for
Amazon.com, Network Associates Labs (formerly Trusted
Information Systems), and others; and he has also worked as
a software developer for Boeing.

Dr. Richard E. Schantz is a principal scientist at BBN
Technologies in Cambridge, Mass., where he has been a key
contributor to advanced distributed computing technology
and transition to common practice for the past 35 years.
His research has been instrumental in defining and evolving
the concepts underlying middleware since its emergence in

http://www.naspi.org/meetings/workgroup/2009_february/presentations/wsu_qos_design_bakken_20090204.pdf
http://www.naspi.org/meetings/workgroup/2009_february/presentations/wsu_qos_design_bakken_20090204.pdf
http://www.epri.com/IntelliGrid/
http://www.controlsystemsroadmap.net/pdfs/roadmap.pdf
http://www.controlsystemsroadmap.net/pdfs/roadmap.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4796248&isnumber=5109837&type=ref?tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4796248&isnumber=5109837&type=ref?tag=1
http://gridstat.net/publications/TR-GS-014.pdf
http://gridstat.net/publications/TR-GS-014.pdf
http://gridstat.net/publications/TR-GS-014.pdf
http://www.dist-systems.bbn.com/papers/2002/ISORC/
http://www.dist-systems.bbn.com/papers/2000/ISORC/
http://www.dist-systems.bbn.com/papers/2000/ISORC/
http://www.naspi.org/meetings/workgroup/2009_february/presentations/wsu_qos_design_bakken_20090204.pdf
http://www.naspi.org/meetings/workgroup/2009_february/presentations/wsu_qos_design_bakken_20090204.pdf
http://docs.sun.com/app/docs/doc/817-0573/6mgc65bb9?a=view
http://docs.sun.com/app/docs/doc/817-0573/6mgc65bb9?a=view
http://www.dist-systems.bbn.com/papers/2001/pldiom/
http://www.dist-systems.bbn.com/papers/2001/pldiom/
http://www.dist-systems.bbn.com/papers/2001/pldiom/
http://quo.bbn.com/papers/2004/RTAS/index.shtml
http://quo.bbn.com/papers/2004/RTAS/index.shtml
http://www.dist-systems.bbn.com/papers/1998/LCR/
http://www.dist-systems.bbn.com/papers/1998/LCR/
http://www.naspi.org/meetings/workgroup/2009_february/presentations/bbn_evolution_middleware_services_schantz_20090205.pdf
http://www.naspi.org/meetings/workgroup/2009_february/presentations/bbn_evolution_middleware_services_schantz_20090205.pdf
http://www.naspi.org/meetings/workgroup/2009_february/presentations/bbn_evolution_middleware_services_schantz_20090205.pdf
http://www.sessionview.com/data/2008/11/26/pdf/Lisa-Beard-3714.pdf
http://www.sessionview.com/data/2008/11/26/pdf/Lisa-Beard-3714.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4610275&arnumber=4610293&count=14&index=5
http://www.naedra.org/doc/public/09_04_16EndToEndCommunicationsForSmartGrid&Drawings.pdf

the early days of the Internet. He was directly responsible
for developing the first operational distributed object
computing capability and transitioning it to production use.
Recently as principal investigator on a number of key
DARPA projects in the areas of adaptive realtime behavior,
system survivability and advanced software engineering, he
has led research efforts toward developing and
demonstrating within network-centric applications the
effectiveness of a new generation of middleware support for
adaptively managing Quality of Service control.

Richard D. Tucker, PE, is a professional engineer
experienced in distribution metering and instrumentation.
The interoperability quest was a defensive mechanism to
deal with the multitude of proprietary metering
communications protocols. Working with Measurement
Canada, ANSI and IEEE from 1992 till 2009, the three
Standards bodies created ANSI C12.18, C12.21, C12.19 and
C12.22 for North American Utility metering and
instrumentation. He has held Chair position IEEE End
Device/TIU subcommittee since 1992. He was honored
during the 2009 SANTA CLARA, CA Connectivity Week
as one of the Leaders in smart grid interoperability by
GridWise Architecture Council (GWAC) for advancing
openness in the smart electric power system of the future.

