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Abstract Interoperability is a key requirement for data 
communications in the ―smart grid‖.   It has been articulated 
at great length by the GridWise Architecture Council 
(GWAC).  However, the interoperability issues identified 
here to date include only interoperability of the data 
exchange.  In this paper, we first argue that middleware is a 
key enabling technology for helping meet interoperability 
requirements and avoid stovepipe systems in the smart grid.  
We then argue that the smart grid‘s data communications 
must support interoperability of Quality of Service (QoS) 
and security mechanisms across an entire power grid; this 
will necessarily involve traversing multiple organizations‘ 
IT infrastructures that may have different network-level 
mechanisms for providing QoS and security. We introduce 
the concept of QoS stovepipes to help illustrate how such 
QoS and security interoperability may occur and its 
consequences.  We then argue that the application 
programmer interface for such QoS and security 
requirements must be kept as high-level as possible to avoid 
QoS stovepipes.  Finally, we argue that middleware-level 
mechanisms are a much better way to provide this end-to-
end QoS and security, compared to the usual technique in 
the power grid of using (and getting locked into) network-
level mechanisms (which the middleware is built on top of). 

1. INTRODUCTION 

Interoperability both within and across utilities is a major 
concern as the communications systems for the "smart grid" 
are being envisioned and planned [1, 2, 3, 4, 5, 6].   Two 
major categories of interoperability are network 
interoperability and syntactic interoperability [3].  Network 
interoperability involves "exchange of messages between 
systems across a variety of networks".   Syntactic 
interoperability involves ―understanding of data structure in 
messages exchanged between systems‖, typically via 
network messages. 

There are a number of cross-cutting interoperability issues 
that span multiple interoperability categories [3].  Two key 

ones which applications require are ―Security & Privacy” 
and ―Quality of Service”. 

Additionally, we believe that any implementations 
supporting interoperability must also support the following 
principles articulated in [2]:  

Principle I09: An interoperability framework must be 
practical and achievable: 

 Meets performance requirements 
 Is reliable 
 Is scalable 
 Has sufficient breadth to meet the range of 

business needs 

Principle I10: An interoperability strategy must 
accommodate the coexistence of and evolvement 
through several generations of IT standards and 
technologies that will reside at any point in time on the 
Grid. 

Middleware (defined further below) is a software 
technology for organizing and programming distributed 
applications, that is, those applications with parts of a 
program or service separated by a network [7].  It has been 
considered "best practices" in other industries for many 
years (see, for example, [8, 9]) but has barely been deployed 
in electric power grids to date, at the least for power 
applications requiring wide-area situational awareness or to 

 
Figure 1: Context of QoS Interoperability [GWAC08] 



 

 

otherwise augment SCADA. 

In this paper, we articulate some issues that must be 
addressed in support of cross-cutting security and privacy, 
as well as QoS aspects, in the GWAC network and syntactic 
interoperability categories. These are highlighted in Figure 
1.   

The major points of this paper are as follows: 

 In support of Principle I09, which essentially 
states that any solutions need to be effective from a 
variety of operational perspectives, it is essential 
that syntactic interoperability is incorporated across 
the board to its individual elements. We believe 
that having a comprehensive middleware 
architectural framework to deliver these services is 
the most effective way to ensure this in a 
comprehensive way, instead of a large collection of 
individual but narrow approaches, mechanisms, 
and evaluations.  

 In order to support interoperability across 
organizations and in support of the "future 
proofing" articulated in Principle I10, it is 
essential that APIs for Quality of Service 
(including security) should be expressed at a 
middleware layer, which maps down onto the 
lower-level mechanisms for providing a given 
property, in order to extend life cycle management 
across the evolution of these mechanisms. 

 In order to support multiple non-functional/QoS 
properties (delay, rate, confidentiality, 
criticality/availability, ...), it is essential that APIs 
be expressed in middleware so that they can be 
integrated and co-managed. 

 We extend the definition of a Stovepipe system to 
include non-functional properties such as QoS and 
security. We call this a QoS Stovepipe System, 
something that the ―smart grid‖ must avoid. 

Finally, we note that we use the term ‗QoS‘ in the title and 
the summary points above to be inclusive of a wide range of 
non-functional/behavioral requirements for smart grid 
communications, i.e., including cyber-security issues, rate, 
synchronization, etc [10]. This is the typical view of many 
(though not all) applied computer scientists, especially those 
working in the middleware (vs. the network 
communication) spaces (see for example [11]).  We note, 
however, that GWAC and others often take a narrower view 
on what QoS is, so throughout the paper we refer to these 
properties either as ―non-functional properties‖ or ―QoS and 
security/privacy‖ or something similar. 

The remainder of this paper is organized as follows. Section 
2 discusses functional interoperability and its opposite 

effect, stovepiped systems. Section 3 analyzes how 
middleware can enhance functional interoperability, i.e. 
traditional APIs and contracts.  Section 4 discusses non-
functional (QoS and security/privacy) issues and 
interoperability.  Section 5 analyzes how middleware can 
enhance QoS interoperability to avoid creating systems that 
are stovepipes in terms of end-to-end QoS and 
security/privacy.  Section 6 concludes the paper. 

2. FUNCTIONAL INTEROPERABILITY AND 

STOVEPIPES 

We now provide a definition of a stovepipe system: 

Stovepipe System: a legacy system that is an 
assemblage of inter-related elements that are so tightly 
bound together that the individual elements cannot be 
differentiated, upgraded or refactored. The stovepipe 
system must be maintained until it can be entirely 
replaced by a new system [12, 13]. 

Stovepipe systems are commonplace in many long-lived 
systems, particularly the military, and unfortunately many 
examples abound in today's electric power grid.  However, 
they are very expensive to maintain, and the opportunity 
cost of their inability to be upgraded or refactored is 
staggering. It is thus essential that as we move forward the 
smart grid minimize the likelihood of creating stovepipe 
systems. 

Interoperability is of course crucial across multiple 
organizations, vendors, standards, locations, and time scales.  
A smart grid clearly requires this [1, 3].  Fortunately, 
technologies and technical approaches developed in 
computer networking distributed computing, and software 
engineering in the last two decades enable the smart grid to 
be built in ways that can avoid both stovepipe systems and 
vendor lock-in.  

Network interoperability (Category 2 in [3]) includes 
transferring data across different networks, inter-domain 
naming issues, etc.  For example, IP can operate above local 
area networks (LANs) running different technologies such 
as Ethernet and token ring.  It also encompasses OSI Layers 
3 and above1: network (3), transport (4), session (5), and 
even sometimes aspects that were formerly thought of as 

                                                           
1 We note that [3] does not list OSI Layer 6: Presentation.  
We believe that this evolving document needs to incorporate 
considerations in this dimension as well. For example, this 
is where interoperability between different CPU types (big 
endian vs. little endian) is handled.  We do believe, 
however, that this would be better handled in a Syntactic 
Interoperability layer (Category 3 of [3]), ideally via 
common middleware. 



 

 

part of the application layer (7)2. Another example of 
Network interoperability is the 2008 North American 
Distribution Metering Standard ANSI C12.22.  It is 
designed to operate with different legacy Electric Utility 
AMI technologies, including IP, by providing services 
(including name service) above the transport layer allowing 
it to ride on any and all networks. [14] ANSI C12.22 
represents the OSI session layer (5, 6) and interfaces with 
ANSI C12.19 representing OSI application layer (7).   

Before we can offer further analysis, we must distinguish 
between two kinds of interoperability: functional 
interoperability and non-functional interoperability.   

Functional interoperability involves the traditional 
interoperability of the application or "business logic".   
Functional interoperability of course requires some kind of 
agreement on the interface: an API or contract [3 Sec 2.1].  
In the next section we describe how middleware can greatly 
aid in functional interoperability.   

Non-functional interoperability involves interoperability 
across behavioral issues such as delay and security.  In 
Section 4 we describe this further, then in Section 5 we 
show how QoS-enabled middleware can aid in providing 
end-to-end QoS that spans multiple organizations, 
underlying lower-level QoS mechanisms, etc.  

3. MIDDLEWARE AND FUNCTIONAL 

INTEROPERABILITY 

3.1. Definition and Benefits of Middleware 

We now provide a definition of middleware [7, 15]: 

Middleware: a layer or layers of software and 
services above the operating system but below the 
application program providing a common 
programming abstraction and system model across 
a distributed system. 

An example of middleware (of a client-server variety) is 
given in Figure 2.  The middleware API offers a given 
programming abstraction (distributed objects, distributed 
tuples, etc) that the middleware implements on top of the 
given operating system's APIs.  This ability for the 
programmer's API to be shielded from that of a lower-level 
operating system mechanism (or, as we will see in Section 
6, being separated from lower-level non-functional APIs for 
such QoS/security properties as delay, throughput, and 

                                                           
2 We note that, in our experience, layers in a distributed 
computing system often don‘t look anything like or behave 
like classically described OSI layers 5 and above; we list 
them here because they are explicitly used as guidance in 
[3]. 

confidentiality) is a key advantage of a middleware 
approach. 

Middleware exists in part to help manage the complexity 
and heterogeneity inherent in distributed systems.  Indeed, 
important aspects of it were developed in large part under 
the umbrella of the US military, due to its extensive 
operational needs, e.g. the Cronus project [16].  Middleware 
provides higher-level and network-centric building blocks 
(abstractions such as distributed objects, distributed tuples, 
remotely updated variables, etc) than an operating system 
provides, and more suitable to distributed computing.  Such 
higher-level building blocks can help make code much more 
portable, with fewer errors (no need to handle low-level 
communications issues), and are much easier to change 
later.  They also make programmers more productive 
because they are much closer to the application's layer of 
abstraction (servers, publishers, variables, hierarchically-
named objects, etc) than the network layer (buffers, DNS 
names, etc). 

Middleware thus also helps insulate the developer from 
different kinds of heterogeneities that are inherent in a 
distributed computing system (and provides interoperability 
across them): 

 Network technology (OSI Layers 2 and 3) 

 CPU architecture (big/little endian, word size, ...); 
including OSI Layer 6 (Presentation) 

 Operating system (or family thereof; exception: 
Microsoft Windows -- de facto albeit not de jure). 

 Programming language  

 Vendor implementation (some middleware 
standards, notably from the Object Management 
Group, have been supported by multiple vendors 
for many years). 

 
Figure 2: Middleware in Context 



 

 

3.2. Standardization of Middleware 

Middleware is typically standardized through a combination 
of at least three levels, to achieve different forms of 
interoperability: 

 API/contract, typically through a language-
independent interface definition language (IDL).  
An IDL compiler then translates the IDL into 
different supported programming language 
interfaces, which the programmers program to in 
the programming language for their particular 
application. 

 Wire protocol: how a method name, server 
identification, parameter list, etc are marshaled into 
a network packet 

 Message protocol: what kinds of message are sent 
at a given middleware layer.  For example, the 
CORBA standard specifies 7 different kinds of 
message; example: a CORBA::REQUEST message 
goes from the client to the server, which responds 
back with a CORBA::REPLY message. 

Middleware is standardized at the interface levels above, but 
most often not at the implementation level underlying that 
interface (for most of the implementation; however, key 
aspects of interoperability e.g. message and wire protocols, 
also accompany the standardization to achieve more specific 
interoperability co-objectives.)   This allows different 
vendors to optimize their implementations in different ways 
and in general to be able to "build a better mousetrap".  This 
in turn makes it feasible for long-running software systems 
to be able to switch vendors mid-life if needed (e.g., by a 
vendor bankruptcy or availability of a better 
implementation).  This switch is not without cost, of course, 
but is a (sometimes small) fraction of the cost of re-
implementing the system from scratch. 

3.3. Multi-Layered Middleware 

Network researchers have of course developed multiple 
layers of network protocols, where each layer builds on the 
one below and offers a higher-level of abstraction or 
service.  Similarly, middleware researchers have developed 
multiple layers of middleware that build on the layer below 
it [17, 18, 19]. As the layers move higher, not only are the 
abstractions and services offered to the programmer at a 
higher level, but they may also become more domain-
specific (but still reusable across applications). 

3.4. Middleware in Other Industries 

The US military has long had complex distributed software 
spread out over wide geographic areas in hostile and 
changing IT conditions.  It was thus a leader in pushing the 

development of middleware; for years, middleware has been 
required by a number of agencies for their distributed 
application programs, including the following: 

 US DOD DISA DISR (current DISR baseline 
version is 09-2; requires DoD PKI Cert to access) 

 US Navy NESI (see NESI-X Part 5 Developer 
Guidance Mid Tier) 

 US Navy Open Architecture Computing 
Environment (OACE) 

 US Navy FORCEnet Reference Architecture 
(FORCEnet Architecture and Standards: Volume 
II, Technical View) 

 US Navy PEO IWS Objective Architecture 
Software Design Document (Draft) 

For more examples of the widespread use of middleware in 
other industries such as aviation, transportation, and 
aerospace, see [8]. 

3.5. Middleware and the Smart Grid 

Note that middleware typically overlays and enhances OSI 
Layers above the transport (4) layer4.  The alternative to 
handling these layers in middleware is to hand-code these 
layers in the application program.  However, this is very 
time-consuming and error prone; the best practices are very 
hard to re-create [9]. 

We thus believe that in the layers described in [3], the 
Network Interoperability layer should address OSI Layers 4 
(transport) and below, not including "Application Protocols" 
as [3 suggests], and arguably not Layer 5 (session), which 
middleware typically handles. Additionally, we believe that 
the Syntactic Interoperability layer should encompass issues 
associated with OSI Layers 5 and 6.  ANSI C12.19 was a 
first effort in Distribution Metering toward solving some of 
the issues that Middleware has solved in other industries, 
such as CPU architecture (big/little endian, word size, data 
types, syntax, syntax organization, device description via 
device class…); including OSI Layer 6 (Presentation).    
Middleware typically handles some session-level issues, but 
may utilize aspects of transport-layer session management 
when it is implemented over a transport such as TCP that 
already provides a form of session management.   

                                                           
4 We note that neither  of the two key documents for smart 
grid interoperability [3, 20] even mention middleware by 
name, and the few examples [3] happens to give are very 
primitive and are mingled in with network protocols without 
distinguishing between the two. 

 

https://disronline.disa.mil/a/public/DISR_reports.jsp
http://nesipublic.spawar.navy.mil/
https://acc.dau.mil/CommunityBrowser.aspx?id=22100&lang=en-US
https://acc.dau.mil/CommunityBrowser.aspx?id=22100&lang=en-US
http://forcenet.navy.mil/


 

 

In this vein, the Distribution Metering Standard, ANSI 
C12.22, is also aligned with the concept of middleware by 
providing services such as ―naming‖ and ―application 
security‖ if needed (Not provided by legacy lower layer 
communications technologies).  It is also, constructed to 
operate above UDP and TCP transport [14]   UDP, which is 
often used as a critical element for both more predictable 
low latency and natural fit within multicast frameworks, has 
no real session layer, so when middleware is implemented 
on top of it the middleware typically does all the session 
management (for example, when a client is "connected" to a 
server object in CORBA or a subscriber is "connected" to a 
publisher). 

Further, we note that the GWAC layering perceptively 
includes a semantic understanding (interoperability) layer. 
There is as yet only limited experience with the appropriate 
ways to separate and integrate these newer views of 
interoperability, but it seems clear that middleware services 
can and should serve as a simplifying organizational base 
apart from the specific technology and mechanisms used to 
implement it, thus pushing our notion of ―interoperable 
systems‖ to an even higher level. 

Finally, we note that middleware is not mutually exclusive 
with existing utility standards such as C37.118, IEC 61850, 
ANSI C12.19/C12.22 and OPC UA.  Indeed, middleware 
can be used to integrate these and other standards into a 
grid-wide inter-utility data delivery system within a 
standardized and hierarchical naming scheme. Additionally, 
some middleware is developed specifically for the wide area 
[21, 11].  Given that the above-mentioned utility standards 
feature protocols that have varied abilities for the wide area 
with QoS and multicast and security, such middleware can 
encapsulate and integrate with messages from current utility 
standards listed above, which may already have widespread 
deployment.    

4. NON-FUNCTIONAL INTEROPERABILITY AND 

QOS STOVEPIPES 

As noted above, functional behavior deals with the business 
logic embedded in programs.  Its APIs are specified in an 
IDL or some similar kind of contract.  While functional 
behavior deals with the “what” of the program or service, 
non-functional behavior deals with the “how”: how fast, 
how robust/available, how secure, how complete.  
Implementing this often also requires sophisticated resource 
management strategies, and encompasses specific issues 
that service providers are routinely concerned with, 
including such things as controlled sharing and utilization of 
resources. 

4.1. Non-functional properties 

Non-functional properties that are required for the power 
grid include the following [22, 23, 24, 25, 26, 27]: 

 End-to-end latency (as low as a few milliseconds 
for current expected applications) 

 Rate (from once a minute to 250 Hz) 

 Widely varying requirements for availability of 
Data: {Ultra-high, Very High, Medium, Low}  

 Confidentiality 

 Integrity 

A crucial point regarding non-functional properties is this—
you usually can’t have them all at once: 

1. Different properties inherently must be traded off 
against others. 

2. Different mechanisms for a given property are 
appropriate for only some of the operating 
conditions an application may encounter 
(especially a long-lived one). 

3. Different mechanisms for the same non-functional 
property can have different tradeoffs of lower-level 
resources (CPU, bandwidth, storage) 

4. Mechanisms most often can‘t be combined in 
arbitrary ways 

Further, even if you somehow could have them all at once, it 
would likely be prohibitively expensive. Given these 
realities, and the fact application programmers rarely can be 
expert in dealing with the above issues, middleware with 
non-functional properties supported in a comprehensive and 
coherent way is a way to package up the handling of these 
issues and allow reuse across application families, 
organizations, and even industries.  Indeed, for this reason, 
the Quality of Service for Objects project (QuO) 
middleware framework even has architecturally created a 
first-class role for a new kind of programmer: a QoS 
Engineer [11, 28, 29] 

4.2. Implementing Non-Functional Properties 

Resource allocation is a big part of resource management 
and is essential for providing non-functional properties.  A 
given lower-level mechanism enables one or more non-
functional properties that may be optimized (or, at 
minimum, appropriate) for some operating conditions and 
inappropriate or even considered ―not working‖ under other 
conditions.  At runtime, a given mechanism may utilize 
different levels of underlying resources (CPU, bandwidth, 
memory/storage).  Different mechanisms providing the 
same property can provide different levels of non-functional 



 

 

service for given operating conditions; they also typically 
offer different tradeoffs between the level of non-functional 
properties provided and resources consumed. 

Examples of typical ways that non-functional properties can 
be supported include the following: 

 Latency mechanisms: a chain of network-level 
―reservations‖ for performance (see below for a 
more detailed view). 

 Confidentiality mechanisms: encryption 

 Integrity mechanisms: higher-level algorithms built 
on top of encryption (e.g., digital signatures). 

 Availability mechanisms: replication (spatial, 
temporal, value) and end-to-end latency 
mechanisms per above. 

4.3. Abstraction Level for Non-Functional APIs 

Best practices dictate that the abstraction level for non-
functional properties offered to the programmer be 
established as high as possible, rather than encouraging 
developers to bind directly into lower-level mechanisms, for 
a number of reasons: 

 It is less error-prone. 

 Very few application programmers are expert in 
low-level, non-functional property mechanisms. 

 Different lower-level mechanisms are available in 
different configurations in different deployments. 

 The APIs of the lower-level mechanisms will 
change over time and perhaps with situation. 

 New lower-level mechanisms providing the same 
property or properties will become available over 
the lifetime of an application (which often can span 
many decades). Such new mechanisms will often 
be better than existing ones in one or more ways, 
including offering a higher level of a non-
functional property or being useable across a wider 
range of operating conditions 

We now give an example of how higher-level properties can 
be mapped down to lower-level mechanisms [30]: 

• Application-Level-1: freshness =  
max_period + max_latency  

• Application-Level-2: rate and latency to deliver a 
given update over given path of links (each with 
given link-level latencies), for a given update 
message size.  Note that the max_period above is 
inversely related to rate here. 

• Network-Level-1: bits/second over a given link.  
This of course depends on the size of the updated 
variable (which may vary considerably) and the 
rate (which in some cases may be changed at 
runtime). 

• Network-Level-2: mechanism-specific parameters 
of a given network-level QoS mechanism 

In Section 5 below, we show the difficulties that application 
programmers may have in directly programming to these 
network-level QoS parameters without the added support 
from a middleware infrastructure layer. 

4.4. QoS Stovepipe Systems 

Recall from Section 2 the definition of a stovepipe system: 

Stovepipe System: a legacy system that is an 
assemblage of inter-related elements that are so tightly 
bound together that the individual elements cannot be 
differentiated, upgraded or refactored. The stovepipe 
system must be maintained until it can be entirely 
replaced by a new system [12, 13] 

From this we propose the following new definition: 

QoS Stovepipe System (QSS): a system of systems 
whose subsystems are locked into low-level 
mechanisms for QoS and security such that  

a) it cannot be deployed in many reasonable 
configurations, or 

b) some programs cannot be combined because they 
use different lower-level QoS mechanisms for the 
same property (e.g., latency) that cannot be 
composed, or 

c) It cannot be upgraded to ―ride the technology‖ 
curve as better low-level QoS and security 
mechanisms become available. 

It is essential that any ―smart grid‖ avoids enabling or 
perhaps even allowing QSS, and in the next section we 
discuss how middleware can help. 

5. MIDDLEWARE AND QOS INTEROPERABILITY 

Common network-level QoS mechanisms include ATM, 
INTSERV/RSVP, IPv6 Flow Labels, DIFFSERV, and 
MPLS. These different mechanisms all have service level 
management capabilities, very roughly parameterized by 
delay, loss, throughput, and security.  However, they have 
very different semantics.  Most offer very coarse notions of 
these properties, although IPv6 Flow Labels [31] offer 
somewhat finer granularity (though likely not nearly what is 
needed for real-time streaming of mission critical data such 
as represented by synchrophasor based applications). 



 

 

But these different mechanisms that seem superficially 
similar vary quite a bit in terms of the sustainable service 
they provide, the kind of control mechanism (and 
corresponding API), and the time that this control 
mechanism is invoked by the program.  Figure 3 
summarizes how ATM, INTSERV/RSVP, IPv6 Flow 
Labels, DIFFSERV, and MPLS all vary widely in such 
ways.  It is worth noting regarding these different 
mechanisms: 

 Composing them (e.g., across ISPs or 
organizations) is not a simple task 

 None are likely to become the single standard or 
protocol and be available everywhere, so 
composition or augmentation may be necessary. 

These together argue that it is best to not burden application 
programmers with individually directly programming to 
these mechanisms for supporting the associated non-
functional properties.  Rather, their use can be incorporated 
as best practices into middleware, with common mappings 
to one or more underlying mechanisms of choice.  This is 
essential if we are to avoid building QSSs for the ―smart 
grid‖.  In our long experience in building distributed 
applications, it is very difficult to avoid QoS Stovepipe 
Systems without an interceding layer of QoS-enabled 
middleware. Such QoS-enabled middleware can be provided 
by experts through common infrastructure not only for 
functional interoperability but also for non-functional 
properties; such middleware has been under research study 
and transition evaluation since the mid- 1990s and later has 

been offered as standardized commercial products (e.g., by 
the OMG) [32].  This allows middleware vendors to 
establish which mechanisms providing different non-
functional properties can be used and combined in which 
ways under which operating conditions, and package this up 
for programmers to use at a higher level.  For research 
examples of such middleware, see [33] [34] [35].  Further 
commentary on this issue can be found at [36]. 

Finally, regarding middleware, in our opinion you cannot 
today buy everything that is needed for complex high 
performance, high precision and highly predictable mission 
critical data delivery systems commercial off the shelf 
(COTS), especially for wide area deployments.  Some 
existing COTS middleware can be very appropriate for 
significant parts of such systems.  However, these 
implementations are not optimized for the very low 
latencies and the very high availabilities that wide-area 
system integrity protection schemes [37] and closed-loop 
control for the grid will require.  We note that besides QoS-
enabled middleware, of course, there still needs to be a 
coherent architecture that utilizes it [38], and a middleware 
based perspective can be an important element of that as 
well. 
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