Developing a Semantic Framework for Smart Grid

Jay Britton
jay.britton@areva-td.com
Interoperability Categories

Organizational

8: Economic/Regulatory Policy
7: Business Objectives
6: Business Procedures

Informational

5: Business Context
4: Semantic Understanding
3: Syntactic Interoperability
2: Network Interoperability
1: Basic Connectivity

Technical

- Political and Economic Objectives as Embodied in Policy and Regulation
- Strategic and Tactical Objectives Shared between Businesses
- Alignment between Operational Business Processes and Procedures
- Awareness of the Business Knowledge Related to a Specific Interaction
- Understanding of the Concepts Contained in the Message Data Structures
- Understanding of Data Structure in Messages Exchanged between Systems
- Mechanism to Exchange Messages between Multiple Systems across a Variety of Networks
- Mechanism to Establish Physical and Logical Connections between Systems
Some definitions...

- **Semantics** refers to the meaning of a set of information.
- A **semantic model** is a structured description of the semantics of a set of information, using some information modeling language (e.g. UML).
 - A semantic model contains ‘metadata’.
 - Many different semantic models are possible for the same semantics, even within one modeling language.
 - Semantic modeling only represents information content – it does not include formatting/encoding (syntactical) specifications.
- A **semantic transformation** is a procedure for converting a given semantic from one semantic model representation to another.
 - This is to be distinguished from a syntactic transformation that would convert a set of information governed by one semantic model from one format to another.
A **canonical data model** (CDM) is a semantic model chosen as a **unifying** model that will govern a collection of data specifications.
Example usage of CDM to define standard interfaces.
Considering the possibility of a single unified model.

• Definition: a unified model:
 – Is ‘normalized’ (no duplicate modeling of the same semantic).
 – Covers the entire problem scope of Smart Grid.

• Challenges:
 – A scope as large as Smart Grid has to be partitioned somehow into domains so that different focus groups can operate in parallel.
 – The difficulty of coordinating normalized modeling goes up exponentially with the number of different domains.
 – There is already significant investment in separate domain models which would have to be changed to achieve a global normalization.
Standard semantic integration within a unified domain – one CDM.
But the real world inevitably has multiple efforts to defined semantic standards.

- Key questions:
 - What happens when CDMs collide?
 - How can we achieve maximum consistency, without killing business domain independence and initiative?
 - This is what the Semantic Framework is trying to answer.
Harmonization: the next best thing for coordinating CDMs.

• Definition: two CDMs are harmonized if:
 – There is a lossless transformation defined between all duplicated semantics.
 – Both sides undertake to maintain the harmony, once established.
Standard semantic integration between harmonized domains – two CDMS.
The Semantic Framework needs to define where we unify and where we harmonize.

- Pragmatic objectives:
 - Minimize the number of CDM domains.
 - Minimize complexity of inter-domain exchanges.
 - Clarify scope and eliminate overlaps between domains.
 - Create contracts between adjacent CDMs that define how to move information between domains.

- The Semantic Framework technical strategy includes:
 - Unify some domains (as CIM has done).
 - Harmonize others in a peer-to-peer contract for transformation -- this is the strategy that preserves existing investment.
 - Create a shared abstract model for common modeling fragments (calendar?, price?, address?, ...).
The Conceptual Model provides a reasonable starting point for dividing Smart Grid by functions.

- **Markets**
 - Market Mgmt
 - Market Ops
 - DER Aggregation
 - Retailer
 - Wholesaler
 - Trading
 - Ancillary Ops

- **Network Operations**
 - Scada
 - EMS
 - DMS
 - Demand Response
 - Network Planning
 - GIS
 - Trans Planning
 - General Ops
 - Asset Mgmt
 - Work Mgmt
 - Meter Data Mgmt

- **Service Providers**
 - Customer Mgmt
 - Billing
 - Account Mgmt
 - Home Mgmt
 - Bldg Mgmt

- **Networks**
 - Nuclear Plants
 - Coal Plants
 - Gas Plants
 - Hydro Plants
 - Pumped Storage
 - Biomass Plants
 - Geothermal Plants
 - Wind Farms
 - Solar Farms

- **Substations**
 - Monitoring
 - Control
 - Relaying
 - WAMS
 - Lines
 - Special Protection
 - Schemes

- **Feeders**
 - Monitoring
 - Control
 - Relaying
 -

- **Meters**
 - Home
 - Buildings
 - Commercial/Industrial
 - Electric Vehicle

Source: NIST Smart Grid Framework 1.0 Sept 2008
Recasting the Conceptual Model for Semantic Mapping