
Grid-Interop Forum 2012 1

The Critical Next Step for Interoperability:
Designing and Implementing Interfaces between Standards

Gary McNaughton
Cornice Engineering

Flagstaff, AZ 86001, USA
gmcnaughton@CorniceEngineering.

com

Linda Rankin
QualityLogic

Portland, OR 97205, USA
lrankin@qualitylogic.com

James Mater
QualityLogic

Portland, OR, 97229, USA
jmater@qualitylogic.com

Keywords: Interoperability, Inter-standard mapping,
MultiSpeak®, OpenADR, smart grid standards

Abstract

While conformance and interoperability of products
adhering to a specific standard is a critical building block
for smart grid systems, it is likely that deployment will
require interfaces between products adhering to two or more
standards. How such inter-standard interfaces are evaluated
and the steps to ensure a standardized inter-standard
interface is the subject of this paper. A recent project by the
MultiSpeak® Initiative mapped the use cases and associated
functions between the MultiSpeak [1] and OpenADR 2
(Open Automated Demand Response) standards based on
business processes [3]1. The project identified overlaps and
gaps in the targeted functions and provides a guide for
developers who are required to include such interfaces in
their system implementations.

The development of the methodology used to map the
demand response functions between two standards is
consistent with other industry mapping efforts and
contributes to the general methodology for undertaking such
inter-standard interface analyses. This paper describes the
methodology in depth, demonstrating its application and
positive results.

1 This material is based upon work supported by the Department
of Energy under Award Number
 DE-OE0000222. This report was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof

An important result of this work is the knowledge that the
functions, methods and data objects contained in
MultiSpeak Version 4.1.5 are sufficient to send demand
response and critical peak price events to an interface that
implements the OpenADR 2.0a profile.

1. BACKGROUND
The MultiSpeak standard is an initiative of the National
Rural Electric Cooperative Association (NRECA) that
standardizes interfaces between enterprise applications
commonly used in electric power utilities for distribution
management. The OpenADR 2 standard was developed to
facilitate automated demand response actions at the
customer location including load shedding or load
shifting. Management of electric load can be used to
improve grid reliability and assist in the integration of
renewable electricity generation sources (such as wind
power). MultiSpeak provides standardized interfaces for
load management applications within the utility domain;
OpenADR 2 provides the methods and services for the
utility to manage load in the consumer domain.

The starting point for the methodology is the understanding
of each of the standards to a depth that permits appropriate
business cases to be identified for mapping of the functions
and data elements.

1.1. MultiSpeak Overview
In order to accomplish the exchange of data among
enterprise application software commonly applied within
utilities, the MultiSpeak Specification standardizes the
interfaces between abstract software functions. These
functions can then be combined to create various enterprise
software applications. The MultiSpeak specification
provides:

• Definitions of common data semantics. In
MultiSpeak, data semantics are documented in the
form of an extensible markup language (XML)
schema.

• Definitions of message structure (syntax). In
MultiSpeak Version 4.1, the XML-formatted data
payload is carried as part of a web services call for

mailto:gmcnaughton@CorniceEngineering.com
mailto:gmcnaughton@CorniceEngineering.com
mailto:donny.helm@oncor.com
mailto:jmater@qualitylogic.com

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 2

real time exchanges and as part of a batch file for
off-line transfers. MultiSpeak messages consist of
one or more of the following three parts: (i) one or
more defined data objects (considered to be nouns),
(ii) actions to be taken on those data objects (called
data object verbs), and (iii) messaging components.

• Definition of which messages are required to
support specific business process steps. Web
services method calls are linked together to
accomplish each potential step in a utility business
process.

The MultiSpeak Specification in total consists of (i) a data
model documented in Unified Modeling Language (UML)
class model and Extensible Markup Language (XML)
schema formats which includes data objects, interface
definitions, and message structures, (ii) service definitions
defined in Web Services Description Language (WSDL)
contracts, (iii) schema documentation in hypertext markup
language format which describes the schema, (iv)
implementation guidelines documents, (v) use cases
describing business processes addressed by MultiSpeak, and
(vi) a specification document.

Figure 1 MultiSpeak Version 4.1.5 Reference
Architecture showing supported abstract software
functions.

Any given piece of application software can implement one
or more of the abstract functions shown in Figure 1 as
appropriate. In some cases, such as a geographic
information system (GIS), the application likely would
implement only a single function, the GIS server. In other
cases, an enterprise application might implement many
abstract functional capabilities. For instance, an AMI system
would implement a meter reading (MR) server and might
also implement connect/disconnect (CD), outage detection
(OD), demand response (DR), home area network
communications (HAN), distribution automation (DA),
and/or prepaid metering (PPM) servers.

Note that each physical software application, for instance
AMI, would be a single actor, despite the fact that it might
implement one or more abstract MultiSpeak software
functions when represented in the MultiSpeak enterprise
service bus representation.

Each of the software functions of an application is
physically implemented using a Web service endpoint that
uses the MultiSpeak-defined data objects and service
definitions along with Web standards and protocols. Thus, a
single application might implement one or more distinct
Web service endpoints. This approach facilitates modular
development. Each version of MultiSpeak is deployed in its
own namespace, making it possible for a single application
to implement interfaces that support a number of different
versions of MultiSpeak.

Figure 1 shows the abstract representation of application
interconnectivity, labeled “MultiSpeak Web Services Bus.”
Physical implementations at a utility could be simply point-
to-point interconnections between Web service endpoints, or
could be a more complex middleware implementation such
as an enterprise service bus, depending on the needs of each
utility. If an application exposes a web service, it is
available for any other application in the enterprise network
to use. This provides much flexibility in adding applications
that may be required for mapping from MultiSpeak to
different standards and their associated protocols.

Finally, it is important to note that each of these functions
might be instantiated by one or more applications in the
enterprise. For instance, messages might be generated from
a customer billing application, a critical peak alerting
system, or another system seeking to get information to the
customer. Each such system would need to exhibit the same
services. As a result, abstract functional definitions have
been developed that can be concretely implemented in
numerous systems at the software design phase.

In addition to the methods defined specifically for each
function, several generic web service methods are defined
and are used for network management and discovery. For
example GetMethods allows for an application to query
another application’s web service to obtain a list of
MultiSpeak-compliant methods that it supports.

1.2. OpenADR Overview
OpenADR is an application layer message exchange
specification used for two-way communication of Demand
Response (DR), price, and Distributed Energy Resource
(DER) signals between the electricity service provider and
its customers. The OpenADR Alliance is developing a
number of profile subsets of the OASIS Energy
Interoperability 1.0 standard; the first of these subsets is
OpenADR 2.0a. This standard provides an open,
standardized DR interface that allows communication of DR

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 3

signals using a common XML-based payload on existing
communication infrastructure, such as the internet. The
OpenADR 2.0 standard is based on other Smart Grid
standards:

• OASIS Energy Interoperability v1.0

• OASIS Energy Market Information Exchange v1.0

• OASIS WS-Calendar v1.0

• IEC Common Information Model

In the Service Provider/Aggregator domain where
OpenADR is deployed2, there are two main entity types that
a particular device can represent: a Virtual Top Node (VTN)
that can initiate a DR event, or a Virtual End Node (VEN)
that can participate in a DR event. Generally in an
interaction, the VTN acts as the server, providing
information to the VEN, which in turn responds to the
information. The response may be to reduce power to some
devices, or it could also propagate the signal further
downstream to other VENs. In this case, the VEN would
become the VTN for the new interaction. OpenADR 2.0
allows for interconnection of these types of nodes in a
connected network, but communication is always between
VTNs and VENs (peer-to-peer communication is not
supported).

Figure 2 Conceptual Diagram of VEN/VTN node
topology illustrating VEN/VTN relationships.

Communication between the VEN/VTN uses standard
internet protocols such as HTTP, and a common data model
is described using XML schema. The VTN can be a service
provider such as a utility, and the VEN could be a gateway
to a HAN or Energy Management Control System.

OpenADR was initially developed to reduce peak loads in
response to “event-based” signals. This Demand Response

2 This is referred to as the OpenADR domain in the
remainder of this paper.

(DR) goal is represented by the “simple” or “OpenADR
2.0a” profile that is targeted towards low power devices.
Extensions to the standard to support more robust devices
and the wholesale space (ISOs) will result in “2.0b” profile.
The OpenADR 2.0 profiles are a subset of the OASIS
Energy Interoperability Standard.

It should be noted that OpenADR was originally designed
considering building HVAC and lighting controls. As a
result OpenADR assumed an intelligent energy controller
(energy management system) would be present and would
allow, for example, for ramp-up/ramp-down capability in
demand response profiles. In contrast neither MultiSpeak
(nor the ZigBee Smart Energy Profile (SEP)) take this
requirement into account, and both make the assumption
that demand-responsive loads are on/off loads with limited
local intelligent control in place. In the case of HVAC loads,
for example, demand response in SEP and MultiSpeak are
of the type “set the thermostat back 10 degrees” rather than
“go to load profile ABC”.

2. METHODOLOGY

The focus of the project was to develop a comprehensive
mapping between the MultiSpeak Version 4.1.5
Specification and OpenADR (Open Automated Demand
Response) 2.0a. The mapping of functions was developed
by:

• Identifying the common business processes
supported by MultiSpeak and OpenADR.

• Specifying the use cases needed to achieve the
goals of these business processes.

• Identifying the available MultiSpeak messages and
payloads for those messages to provide the data
exchanges needed by OpenADR-enabled
applications.

• Identifying the corresponding OpenADR services
and payloads.

• Identifying the overlaps and gaps in the
functionality between MultiSpeak and OpenADR.

The analysis was based on the following assumptions:

• An adaptor application, DRMS, maintains state
regarding the active and pending events for the
OpenADR domain. This state is updated and
managed through the MultiSpeak methods for
initiating and cancelling events. The DRMS, for
example, may be an OpenADR application that has
implemented an interface to MultiSpeak compliant
applications.

• The events originate in the MultiSpeak domain and
that the DRMS will operate as a VTN for the
downstream traffic.

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 4

Mapping of functions and data flows show how both the
Initiate and Cancel methods of MultiSpeak for demand
response and critical peak price events can be mapped to
corresponding request/response flows in OpenADR. Flows
for both the OpenADR PUSH and PULL methods were
developed.

3. DETAILED METHODOLOGY
The following sections of this paper detail the methodology
used and demonstrate its application to the MultiSpeak-
OpenADR interface.

3.1. Business Processes
The mapping of MultiSpeak to OpenADR is based on
identifying the end-to-end business processes supported by
the functionality of both standards. Business processes can
then be further expanded to individual flows or use cases
that are needed to implement them.

MultiSpeak provides standardized interfaces for load
management applications within the utility enterprise (both
distribution utilities and vertically integrated utilities);
OpenADR provides the methods and services for the utility
to manage consumer loads for integration of renewable
energy, grid reliability and energy savings. In this mapping
project, the utility business processes that would be enabled
by systems where OpenADR is deployed are:

1. The utility manages its demand response resources
by distributing events to customers with responsive
assets. Customers may choose to participate in one
or more events.

2. The utility distributes/updates critical peak price
events to customers enrolled in a program.
Customers may choose to participate in one or
more events.

3.1.1. Actors and Domains
Actors and domains are abstractions that are used to
illustrate the business process use cases. The eventual
implementation may vary, although the flow of data is
expected to be the same.

MultiSpeak is used within the utility enterprise as a means
to standardize the interface between utility enterprise
applications. OpenADR is a protocol that is used to
communicate demand response events between the utility
and the customer. As such, each standard is used to interface
to different applications in a separate operational domain. In
the MultiSpeak domain, the actor selected for these
examples is a demand management application that is
responsible for managing the demand response programs
within the utility.

The actor in the OpenADR domain would be a system that
presents a VEN interface to the utility. This application may

be one implemented by an aggregator (that in turn manages
downstream events as a VTN), or it may be the application
used by a gateway to a Home Area Network (HAN) or an
Energy Management Control System. This actor is the
OpenADR client, or VEN, and is completely contained
within the OpenADR domain.
To bridge between the two domains, a third actor needs to
be introduced; an adaptor application called the Demand
Response Management System (DRMS). This application
interfaces to the demand management application in the
MultiSpeak domain, and then acts as a VTN in the
OpenADR domain. This actor contains all of the
communication and transport layer functionality to manage
each interface independently as well as the ability to
transform the data and information from MultiSpeak to
OpenADR (and vice versa).

Figure 3 provides a schematic representation of the actors
and domains of interest.

It is also assumed that the DRMS maintains the state
information needed in order to map the services and
functionality from one domain to the other. For example, in
the MultiSpeak domain, demand response events are
initiated or canceled. In the OpenADR domain, once an
event has been created, it remains active or pending until it
has expired or it is canceled. The DRMS/VTN is the entity
that maintains relevant state information regarding events in
both domains as well as performing the logical translation
between the two.

This model assumes that events originate in the MultiSpeak
domain, and that the utility is not acting as an OpenADR
aggregator and receiving events from an upstream VTN.
This is consistent with the usage model for the OpenADR
2.0a profile.

Figure 3 MultiSpeak/OpenADR domains and primary
actors

To summarize, the analysis is based on the following
assumptions:

• An adaptor application, DRMS, maintains state
information regarding the active and pending
events for the OpenADR domain. This state is

Internet
OpenADR Domain

Utility Operations
MultiSpeak Domain

Demand
Management

Demand Response
Management System/

VTNEnterprise network
VEN Client

Internet

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 5

updated and managed through the MultiSpeak
methods for initiating and canceling events. The
DRMS, for example, may be an OpenADR
application that has implemented an interface to
MultiSpeak compliant applications.

• The events originate in the MultiSpeak domain and
the DRMS will operate as a VTN for the
downstream traffic.

The challenge then is to ensure that MultiSpeak contains
sufficient capability to provide the data required by
OpenADR-enabled applications to implement their desired
functionality.

3.2. Use Cases and Sequence Diagrams
For each business process a set of use cases and their
corresponding sequence diagrams have been developed to
illustrate the operations and transfer of information between
each of the actors in each domain. Along with the mapping
of business processes to use cases, the MultiSpeak methods
and objects and OpenADR services and payloads that would
be used in implementing the use case were developed.
These provide the framework for the flow diagrams along
with the XML mapping tables for each of the use cases.

More tables and detail is provided in the QualityLogic
report published by the MultiSpeak Initiative [3]. The
Report includes:

• Sequence diagrams for the use cases that show the
flow of information and data from one domain to
the other.

• For each object used in the flows, an XML
mapping between the elements of one domain to
the other is shown. The criterion for mapping an
object is if the information in the payload is
relevant to the functionality being performed in the
domain being mapped. For example, a mapping of
the oadrRequest event payload to a MultiSpeak
object was not required because it is handled solely
by the VTN and does not require information or
data to be exchanged directly with an application in
the MultiSpeak domain.

• XML diagrams showing the OpenADR objects that
are being mapped to are in Appendix A, and the
MultiSpeak objects are shown in Appendix B of
the report.

3.2.1. Use Cases
In the investigation of the two business processes that are
facilitated by mapping of MultiSpeak to OpenADR, the
following Use Cases were identified for each:

Utility manages demand response event to customer
demand response resource(s).

• Utility issues demand response event to customer
demand response resource(s) (PUSH Method)

• Utility cancels active or future demand response
event (PUSH Method)

• Utility modifies demand response event (PUSH
Method)

• VEN requests list of active events (PULL model)
The utility manages price signals to customers, who decide
how to respond using their demand resources.

• Utility issues critical peak price event (PUSH
Method)

• Utility cancels active or future critical peak price
event (PUSH Method)

• Utility modifies critical peak price event (PUSH
Method)

• VEN requests list of active events (PULL model)

3.2.2. Messages, Objects, Services and Payloads
For each use case, the specific MultiSpeak messages and
OpenADR services used to implement the needed
functionality in each domain have been identified.
For example, in the use case where the utility issues
a demand response event to a customer, a
DemandResponseNotification message originates in the
MultiSpeak domain, and is transformed into a
corresponding oadrDistributeEvent message using the
EiEvent service in the OpenADR domain. The information
that is exchanged between the two domains is also
determined by the MultiSpeak objects used in the messages,
and the OpenADR payloads. For instance, the MultiSpeak
messages/objects and OpenADR services/payloads for the
use case

“Utility issues demand response event to customer demand
response resource(s) (PUSH Method)” are:

• MultiSpeak Message:
DemandResponseEventNotification;
InitiateDemandResponseEvent;
InitiateDemandResponseEventToGroup

• MultiSpeak Object used in the Message Payload:
demandResponseEvent;
demandResponseEventStatus

• OpenADR Service: EiEvent

• OpenADR Payload: oadrDistributeEvent;
oadrCreatedEvent

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 6

Similar Messages, Objects, Services and Payloads have
been identified for the other use cases.

3.2.3. Mappings of Data Elements
The next step was to develop mapping tables between the
XML data elements of the MultiSpeak objects and
OpenADR payloads. Mapping from one standard to another
is not always direct, and a set of mapping descriptors were
defined for the tables. The following mapping terms were
defined:

- Direct: A mapping can be done directly from one
schema element to the other. A transformation from one
format to another may need to be performed (i.e.,
integer versus floating point).

- Derived: The value or content of the destination
element can be derived from other information, such as
the function name, other elements, etc. Examples of
recommended values or algorithms may be provided.

- NA: The element being mapped is specific to the
standard, such as protocols used in services for tracking
messages, or does not apply to the specific use case.

- Computed: The data element can be computed
(elements such as timestamps would fall under this
category). UsageGap: Required to implement the
functionality in the standard that is being mapped if it is
not directly available and cannot be computed or
derived.

- ExtGap: The standard being mapped has additional
features that are not currently supported by MultiSpeak
usage models or data objects and cannot be computed
or derived.

As a result, the mapping table analysis shows how elements
are mapped, along with identifying current gaps in data
content or areas of future development.

For instance, in the mapping of DemandResponseEvent to
oadrDistributeEvent.oadrEvent.eiEvent.eventDescriptor, the
<objectID> element in the MultiSpeak message could be
used directly for the <eventID> in the OpenADR
eventDescriptor. In the mapping table, the mapping field for
these elements would indicate “Direct”.

As another example, the OpenADR <eventStatus> is used to
indicate if the event is far, near, active or canceled. In the
mapping table, this element is derived from the MultiSpeak
element <eventStartTime>, and if the MultiSpeak message
is used for initiating or canceling an event. In this case, the
mapping is “derived” and the algorithm is described.

4. GAP ANALYSIS
There are two ways to categorize gaps in this analysis. The
first is identifying those gaps where existing MultiSpeak

methods and data objects are not sufficient in providing the
information such that the same functionality can be
supported using OpenADR. These are called Usage Gaps.

The second set of gaps are those that have been identified
when the objective is to determine if OpenADR has
additional functionality or content that would be of value to
import to MultiSpeak. Addressing this set of gaps would
provide the functionality such that MultiSpeak could
support the full range of capabilities in OpenADR. These
are called Extension Gaps.

Usage Gaps

The functions, methods and data objects in MultiSpeak
Version 4.1.5 are sufficient in sending demand response and
critical peak price events to an interface that implements the
OpenADR 2.0a profile. No critical usage gaps were
identified. However, some of the elements that are present
in the MultiSpeak demand response event object have no
counterpart in OpenADR.

Extension Gaps

There were several extension gaps identified in the mapping
of the MultiSpeak data objects and functions to the
OpenADR eiEvent services.

OpenADR supports the ability to “modify” events.
MultiSpeak currently only supports the verbs of “Initiate”
and “Cancel” for the operations on the data objects. A flow
was described that allows for modification of events using
the capabilities present in MultiSpeak Version 4.1.5.

OpenADR event signals support more than one interval.
This allows more control points over the load. For example,
a price signal may have three intervals, one where the value
is low, medium and then high. The current definition of DR
and critical peak price events in MultiSpeak are limited to
one interval and therefore one value over the duration of the
event.

OpenADR eiEvent includes attributes that define
notification duration; ramp-up and recovery times for the
event for examples as to how they relate to the event. These
periods do not exist in the MultiSpeak event objects.

A critical peak price event by definition implies that the
price for the event is at the highest level. The EiEvent
<signalPayload> attribute allows for events to have 4 values
(normal, moderate, high or special). The event objects in
MultiSpeak do not provide for representing other values for
price besides “peak”.

5. SUMMARY AND CONCLUSIONS
The mapping of functions between the MultiSpeak and
OpenADR 2 standards are analyzed and presented using a
use case methodology based on business processes. Use
cases and their corresponding sequence diagrams provide a

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 7

means to represent detailed and complex flows required to
implement a specific business process. Where gaps in
MultiSpeak coverage are identified, they are documented
for future action. The result is that a comprehensive
description of how MultiSpeak maps to OpenADR 2 as well
as a quick reference and guide to the relevant MultiSpeak
methods within the MultiSpeak specification are now
available to developers and system implementers.

The results of this work indicate that the functions, methods
and data objects contained in MultiSpeak Version 4.1.5 are
sufficient to send demand response and critical peak price
events to an interface that implements the OpenADR 2.0a
profile. No critical usage gaps (gaps where a particular
OpenADR functionality cannot be supported by
MultiSpeak) were identified. Two minor usage gaps and
several extension gaps (capabilities in OpenADR that would
enrich MultiSpeak if introduced into the MultiSpeak
specification) were noted. It was determined that both the
minor usage gaps and all extension gaps can be handled
through the use of existing extension mechanisms in
MultiSpeak Version 4.1.5 and dealt with by minor changes
to the functionality of MultiSpeak in future Versions.

The methodology developed for this project can serve as a
model for other mapping efforts.

5.1. References
 [1]. Additional information about the MultiSpeak
Initiative and Specification is available at
http://www.multispeak.org.
[2] Additional information about OpenADR is available at
http://www.openadr.org/.

[3] “Function and Data Mapping: MultiSpeak® and
OpenADR 2.0”, DRAFT, Version 1.0, September 24, 2012,
prepared by QualityLogic for NRECA CRN Smart Grid
Regional Demonstration Project and National Rural Electric
Cooperative Association.

6. BIOGRAPHY

 Gary A. McNaughton is the Vice
President and Principal Engineer for
Cornice Engineering, Inc. He received a
B.S.E.E. degree from Kansas State
University in 1976 and an M.S.E.E. degree
from the University of Colorado in 1980.
Prior to joining Cornice in 1995 he worked

as a Plant Electrical Engineer for Union Carbide, at the Oak
Ridge Gaseous Diffusion Plant, at Oak Ridge, TN, as a
Transmission Planning and Protection Engineer for
Colorado-Ute Electric Association, a generation and
transmission cooperative, located in Montrose, CO, and as

Staff Engineer, Manager of Engineering, and Assistant
General Manager for Engineering and Operations for La
Plata Electric Association, in Durango, CO. Mr.
McNaughton currently serves as the Technical Coordinator
for NRECA’s MultiSpeak® Initiative. Mr. McNaughton is
a registered professional engineer in the States of Colorado
and Arizona.

James Mater founded and has held several
executive positions at QualityLogic Inc.
from June 1994 to present. He is currently
Co-Founder and General Manager, Smart
Grid, working on QualityLogic's Smart Grid
strategy, including work with GWAC, the
Pacific Northwest Smart Grid Demonstration

Project, and giving papers and presentations on
interoperability. From 2001 to October, 2008, James
oversaw the company as President and CEO. From 1994 to
1999 he founded and built Revision Labs which was merged
with Genoa Technologies in 1999 to become QualityLogic.
Prior to QualityLogic, James held Product Management
roles at Tektronix, Floating Point Systems, Sidereal and
Solar Division of International Harvester. He is a graduate
of Reed College and Wharton School, University of
Pennsylvania.

Linda Rankin is a Senior Test Architect for
QualityLogic and is the Company’s
technical lead for the Pacific NW Smart
Grid Demonstration Project. She has been
an Assistant Professor and Research
Scientist at Maseeh College of Engineering

and Computer Science of Portland State University,
teaching and developing curricula pertaining to Smart Grid
digital technologies. Until 2008, she was a Principal
Engineer at Intel Corporation and has more than 20 years
experience as a system architect working applied research
and advanced product development in the areas of
networking, parallel processing, server platforms, and
microprocessors. She is a graduate Lewis & Clark College,
and Oregon Graduate Institute. Linda has authored papers
for technical journals, is a Senior member of IEEE, and
holds more than 25 patents or pending patents, many of
which are international.

	Abstract
	1. background
	1.1. MultiSpeak Overview
	1.2. OpenADR Overview

	2. methodology
	3. detailed methodology
	3.1. Business Processes
	3.1.1. Actors and Domains

	3.2. Use Cases and Sequence Diagrams
	3.2.1. Use Cases
	3.2.2. Messages, Objects, Services and Payloads
	3.2.3. Mappings of Data Elements

	4. Gap Analysis
	5. Summary and Conclusions
	5.1. References

	6. Biography

